Spaces:
Runtime error
Runtime error
Merge pull request #11 from jenbenarye/main
Browse filestraining (lora) & dataset processing scripts
- .gitignore +13 -1
- app/app.py +3 -0
- ml/adapter_metadata.py +41 -0
- ml/dataset_training.ipynb +0 -398
- ml/kto.py +0 -117
- ml/kto_dataset_processor.py +196 -51
- ml/{kto_pipeline.py → trainer.py} +116 -53
.gitignore
CHANGED
|
@@ -160,4 +160,16 @@ cython_debug/
|
|
| 160 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 161 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 162 |
#.idea/
|
| 163 |
-
user_feedback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 161 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 162 |
#.idea/
|
| 163 |
+
user_feedback
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# Hugging Face cache
|
| 167 |
+
wandb/
|
| 168 |
+
.cache/
|
| 169 |
+
cached_*
|
| 170 |
+
|
| 171 |
+
# Hugging Face datasets
|
| 172 |
+
datasets/
|
| 173 |
+
|
| 174 |
+
# Hugging Face models
|
| 175 |
+
models/
|
app/app.py
CHANGED
|
@@ -386,6 +386,9 @@ css = """
|
|
| 386 |
.option.svelte-pcaovb {
|
| 387 |
display: none !important;
|
| 388 |
}
|
|
|
|
|
|
|
|
|
|
| 389 |
"""
|
| 390 |
|
| 391 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 386 |
.option.svelte-pcaovb {
|
| 387 |
display: none !important;
|
| 388 |
}
|
| 389 |
+
.retry-btn {
|
| 390 |
+
display: none !important;
|
| 391 |
+
}
|
| 392 |
"""
|
| 393 |
|
| 394 |
with gr.Blocks(css=css) as demo:
|
ml/adapter_metadata.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from typing import List, Dict
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
@dataclass
|
| 7 |
+
class AdapterMetadata:
|
| 8 |
+
"""Metadata for tracking adapter training history"""
|
| 9 |
+
training_timestamp: str # ISO format timestamp
|
| 10 |
+
training_params: Dict # Training parameters used
|
| 11 |
+
model_name: str # Base model name
|
| 12 |
+
language: str # Language of the adapter
|
| 13 |
+
version: str # Version of the adapter
|
| 14 |
+
|
| 15 |
+
# Create class instance from a dictionary
|
| 16 |
+
@classmethod
|
| 17 |
+
def from_dict(cls, data: Dict):
|
| 18 |
+
return cls(**data)
|
| 19 |
+
|
| 20 |
+
# Convert class instance to a dictionary
|
| 21 |
+
def to_dict(self) -> Dict:
|
| 22 |
+
return {
|
| 23 |
+
"training_timestamp": self.training_timestamp,
|
| 24 |
+
"dataset_entries": self.dataset_entries,
|
| 25 |
+
"training_params": self.training_params,
|
| 26 |
+
"model_name": self.model_name,
|
| 27 |
+
"language": self.language,
|
| 28 |
+
"version": self.version
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
# Save metadata to a JSON file
|
| 32 |
+
def save(self, filepath: str):
|
| 33 |
+
with open(filepath, 'w') as f:
|
| 34 |
+
json.dump(self.to_dict(), f, indent=2)
|
| 35 |
+
|
| 36 |
+
# Load metadata from a JSON file
|
| 37 |
+
@classmethod
|
| 38 |
+
def load(cls, filepath: str):
|
| 39 |
+
with open(filepath, 'r') as f:
|
| 40 |
+
data = json.load(f)
|
| 41 |
+
return cls.from_dict(data)
|
ml/dataset_training.ipynb
DELETED
|
@@ -1,398 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 43,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"#dependencies:\n",
|
| 10 |
-
"import pandas as pd\n",
|
| 11 |
-
"\n",
|
| 12 |
-
"import torch\n",
|
| 13 |
-
"from transformers import GPT2Tokenizer\n",
|
| 14 |
-
"\n",
|
| 15 |
-
"from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer"
|
| 16 |
-
]
|
| 17 |
-
},
|
| 18 |
-
{
|
| 19 |
-
"cell_type": "code",
|
| 20 |
-
"execution_count": 44,
|
| 21 |
-
"metadata": {},
|
| 22 |
-
"outputs": [
|
| 23 |
-
{
|
| 24 |
-
"data": {
|
| 25 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 26 |
-
"model_id": "b8a22b8d60c0417eafbf554832398287",
|
| 27 |
-
"version_major": 2,
|
| 28 |
-
"version_minor": 0
|
| 29 |
-
},
|
| 30 |
-
"text/plain": [
|
| 31 |
-
"Resolving data files: 0%| | 0/18 [00:00<?, ?it/s]"
|
| 32 |
-
]
|
| 33 |
-
},
|
| 34 |
-
"metadata": {},
|
| 35 |
-
"output_type": "display_data"
|
| 36 |
-
},
|
| 37 |
-
{
|
| 38 |
-
"data": {
|
| 39 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 40 |
-
"model_id": "b83d2624c2b14986a8297821460225ab",
|
| 41 |
-
"version_major": 2,
|
| 42 |
-
"version_minor": 0
|
| 43 |
-
},
|
| 44 |
-
"text/plain": [
|
| 45 |
-
"Resolving data files: 0%| | 0/18 [00:00<?, ?it/s]"
|
| 46 |
-
]
|
| 47 |
-
},
|
| 48 |
-
"metadata": {},
|
| 49 |
-
"output_type": "display_data"
|
| 50 |
-
},
|
| 51 |
-
{
|
| 52 |
-
"data": {
|
| 53 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 54 |
-
"model_id": "b4304c0f48cb472589b5e80d3a42cba2",
|
| 55 |
-
"version_major": 2,
|
| 56 |
-
"version_minor": 0
|
| 57 |
-
},
|
| 58 |
-
"text/plain": [
|
| 59 |
-
"Resolving data files: 0%| | 0/18 [00:00<?, ?it/s]"
|
| 60 |
-
]
|
| 61 |
-
},
|
| 62 |
-
"metadata": {},
|
| 63 |
-
"output_type": "display_data"
|
| 64 |
-
}
|
| 65 |
-
],
|
| 66 |
-
"source": [
|
| 67 |
-
"#loading datasets:\n",
|
| 68 |
-
"from datasets import load_dataset\n",
|
| 69 |
-
"\n",
|
| 70 |
-
"ds = load_dataset(\"stanfordnlp/SHP\", split='train')"
|
| 71 |
-
]
|
| 72 |
-
},
|
| 73 |
-
{
|
| 74 |
-
"cell_type": "code",
|
| 75 |
-
"execution_count": 45,
|
| 76 |
-
"metadata": {},
|
| 77 |
-
"outputs": [
|
| 78 |
-
{
|
| 79 |
-
"name": "stdout",
|
| 80 |
-
"output_type": "stream",
|
| 81 |
-
"text": [
|
| 82 |
-
"Index(['post_id', 'domain', 'upvote_ratio', 'history', 'c_root_id_A',\n",
|
| 83 |
-
" 'c_root_id_B', 'created_at_utc_A', 'created_at_utc_B', 'score_A',\n",
|
| 84 |
-
" 'score_B', 'human_ref_A', 'human_ref_B', 'labels', 'seconds_difference',\n",
|
| 85 |
-
" 'score_ratio'],\n",
|
| 86 |
-
" dtype='object')\n"
|
| 87 |
-
]
|
| 88 |
-
}
|
| 89 |
-
],
|
| 90 |
-
"source": [
|
| 91 |
-
"df = ds.to_pandas()\n",
|
| 92 |
-
"print(df.columns)\n"
|
| 93 |
-
]
|
| 94 |
-
},
|
| 95 |
-
{
|
| 96 |
-
"cell_type": "code",
|
| 97 |
-
"execution_count": 46,
|
| 98 |
-
"metadata": {},
|
| 99 |
-
"outputs": [
|
| 100 |
-
{
|
| 101 |
-
"data": {
|
| 102 |
-
"text/html": [
|
| 103 |
-
"<div>\n",
|
| 104 |
-
"<style scoped>\n",
|
| 105 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 106 |
-
" vertical-align: middle;\n",
|
| 107 |
-
" }\n",
|
| 108 |
-
"\n",
|
| 109 |
-
" .dataframe tbody tr th {\n",
|
| 110 |
-
" vertical-align: top;\n",
|
| 111 |
-
" }\n",
|
| 112 |
-
"\n",
|
| 113 |
-
" .dataframe thead th {\n",
|
| 114 |
-
" text-align: right;\n",
|
| 115 |
-
" }\n",
|
| 116 |
-
"</style>\n",
|
| 117 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 118 |
-
" <thead>\n",
|
| 119 |
-
" <tr style=\"text-align: right;\">\n",
|
| 120 |
-
" <th></th>\n",
|
| 121 |
-
" <th>upvote_ratio</th>\n",
|
| 122 |
-
" <th>history</th>\n",
|
| 123 |
-
" <th>score_A</th>\n",
|
| 124 |
-
" <th>score_B</th>\n",
|
| 125 |
-
" <th>human_ref_A</th>\n",
|
| 126 |
-
" <th>human_ref_B</th>\n",
|
| 127 |
-
" <th>labels</th>\n",
|
| 128 |
-
" <th>score_ratio</th>\n",
|
| 129 |
-
" </tr>\n",
|
| 130 |
-
" </thead>\n",
|
| 131 |
-
" <tbody>\n",
|
| 132 |
-
" <tr>\n",
|
| 133 |
-
" <th>0</th>\n",
|
| 134 |
-
" <td>0.99</td>\n",
|
| 135 |
-
" <td>In an interview right before receiving the 201...</td>\n",
|
| 136 |
-
" <td>52</td>\n",
|
| 137 |
-
" <td>54</td>\n",
|
| 138 |
-
" <td>Currently wrapping up my PhD. There is a stark...</td>\n",
|
| 139 |
-
" <td>It’s ironic to me that research has shown that...</td>\n",
|
| 140 |
-
" <td>0</td>\n",
|
| 141 |
-
" <td>1.038462</td>\n",
|
| 142 |
-
" </tr>\n",
|
| 143 |
-
" <tr>\n",
|
| 144 |
-
" <th>1</th>\n",
|
| 145 |
-
" <td>0.95</td>\n",
|
| 146 |
-
" <td>If any professor is reading this: please do no...</td>\n",
|
| 147 |
-
" <td>5</td>\n",
|
| 148 |
-
" <td>17</td>\n",
|
| 149 |
-
" <td>And when your teacher doesn't listen or pay at...</td>\n",
|
| 150 |
-
" <td>I'm pretty strict on time, to the point where ...</td>\n",
|
| 151 |
-
" <td>0</td>\n",
|
| 152 |
-
" <td>3.400000</td>\n",
|
| 153 |
-
" </tr>\n",
|
| 154 |
-
" <tr>\n",
|
| 155 |
-
" <th>2</th>\n",
|
| 156 |
-
" <td>0.95</td>\n",
|
| 157 |
-
" <td>If any professor is reading this: please do no...</td>\n",
|
| 158 |
-
" <td>5</td>\n",
|
| 159 |
-
" <td>7</td>\n",
|
| 160 |
-
" <td>Profs can be oblivious? What’s new!</td>\n",
|
| 161 |
-
" <td>This sounds like a problem with a specific pro...</td>\n",
|
| 162 |
-
" <td>0</td>\n",
|
| 163 |
-
" <td>1.400000</td>\n",
|
| 164 |
-
" </tr>\n",
|
| 165 |
-
" <tr>\n",
|
| 166 |
-
" <th>3</th>\n",
|
| 167 |
-
" <td>0.95</td>\n",
|
| 168 |
-
" <td>If any professor is reading this: please do no...</td>\n",
|
| 169 |
-
" <td>7</td>\n",
|
| 170 |
-
" <td>5</td>\n",
|
| 171 |
-
" <td>This sounds like a problem with a specific pro...</td>\n",
|
| 172 |
-
" <td>And when your teacher doesn't listen or pay at...</td>\n",
|
| 173 |
-
" <td>1</td>\n",
|
| 174 |
-
" <td>1.400000</td>\n",
|
| 175 |
-
" </tr>\n",
|
| 176 |
-
" <tr>\n",
|
| 177 |
-
" <th>4</th>\n",
|
| 178 |
-
" <td>0.95</td>\n",
|
| 179 |
-
" <td>If any professor is reading this: please do no...</td>\n",
|
| 180 |
-
" <td>6</td>\n",
|
| 181 |
-
" <td>7</td>\n",
|
| 182 |
-
" <td>This would be totally unacceptable in my class...</td>\n",
|
| 183 |
-
" <td>This sounds like a problem with a specific pro...</td>\n",
|
| 184 |
-
" <td>0</td>\n",
|
| 185 |
-
" <td>1.166667</td>\n",
|
| 186 |
-
" </tr>\n",
|
| 187 |
-
" <tr>\n",
|
| 188 |
-
" <th>...</th>\n",
|
| 189 |
-
" <td>...</td>\n",
|
| 190 |
-
" <td>...</td>\n",
|
| 191 |
-
" <td>...</td>\n",
|
| 192 |
-
" <td>...</td>\n",
|
| 193 |
-
" <td>...</td>\n",
|
| 194 |
-
" <td>...</td>\n",
|
| 195 |
-
" <td>...</td>\n",
|
| 196 |
-
" <td>...</td>\n",
|
| 197 |
-
" </tr>\n",
|
| 198 |
-
" <tr>\n",
|
| 199 |
-
" <th>348713</th>\n",
|
| 200 |
-
" <td>0.94</td>\n",
|
| 201 |
-
" <td>Can I get in trouble for giving my neighbor hi...</td>\n",
|
| 202 |
-
" <td>7</td>\n",
|
| 203 |
-
" <td>25</td>\n",
|
| 204 |
-
" <td>Just put up a fence. Legally he isn't responsi...</td>\n",
|
| 205 |
-
" <td>Whatever you do, don't cut his trees down.</td>\n",
|
| 206 |
-
" <td>0</td>\n",
|
| 207 |
-
" <td>3.571429</td>\n",
|
| 208 |
-
" </tr>\n",
|
| 209 |
-
" <tr>\n",
|
| 210 |
-
" <th>348714</th>\n",
|
| 211 |
-
" <td>0.94</td>\n",
|
| 212 |
-
" <td>Can I get in trouble for giving my neighbor hi...</td>\n",
|
| 213 |
-
" <td>2</td>\n",
|
| 214 |
-
" <td>25</td>\n",
|
| 215 |
-
" <td>If OP pays someone to clean his yard, and then...</td>\n",
|
| 216 |
-
" <td>Whatever you do, don't cut his trees down.</td>\n",
|
| 217 |
-
" <td>0</td>\n",
|
| 218 |
-
" <td>12.500000</td>\n",
|
| 219 |
-
" </tr>\n",
|
| 220 |
-
" <tr>\n",
|
| 221 |
-
" <th>348715</th>\n",
|
| 222 |
-
" <td>0.94</td>\n",
|
| 223 |
-
" <td>Can I get in trouble for giving my neighbor hi...</td>\n",
|
| 224 |
-
" <td>9</td>\n",
|
| 225 |
-
" <td>7</td>\n",
|
| 226 |
-
" <td>My observation is that both of you are idiots...</td>\n",
|
| 227 |
-
" <td>Are you Rand Paul's neighbor? https://www.gq....</td>\n",
|
| 228 |
-
" <td>1</td>\n",
|
| 229 |
-
" <td>1.285714</td>\n",
|
| 230 |
-
" </tr>\n",
|
| 231 |
-
" <tr>\n",
|
| 232 |
-
" <th>348716</th>\n",
|
| 233 |
-
" <td>0.94</td>\n",
|
| 234 |
-
" <td>Can I get in trouble for giving my neighbor hi...</td>\n",
|
| 235 |
-
" <td>9</td>\n",
|
| 236 |
-
" <td>7</td>\n",
|
| 237 |
-
" <td>My observation is that both of you are idiots...</td>\n",
|
| 238 |
-
" <td>Just put up a fence. Legally he isn't responsi...</td>\n",
|
| 239 |
-
" <td>1</td>\n",
|
| 240 |
-
" <td>1.285714</td>\n",
|
| 241 |
-
" </tr>\n",
|
| 242 |
-
" <tr>\n",
|
| 243 |
-
" <th>348717</th>\n",
|
| 244 |
-
" <td>0.94</td>\n",
|
| 245 |
-
" <td>Can I get in trouble for giving my neighbor hi...</td>\n",
|
| 246 |
-
" <td>7</td>\n",
|
| 247 |
-
" <td>2</td>\n",
|
| 248 |
-
" <td>Capture his acts on camera. Collect and bag l...</td>\n",
|
| 249 |
-
" <td>If OP pays someone to clean his yard, and then...</td>\n",
|
| 250 |
-
" <td>1</td>\n",
|
| 251 |
-
" <td>3.500000</td>\n",
|
| 252 |
-
" </tr>\n",
|
| 253 |
-
" </tbody>\n",
|
| 254 |
-
"</table>\n",
|
| 255 |
-
"<p>348718 rows × 8 columns</p>\n",
|
| 256 |
-
"</div>"
|
| 257 |
-
],
|
| 258 |
-
"text/plain": [
|
| 259 |
-
" upvote_ratio history \\\n",
|
| 260 |
-
"0 0.99 In an interview right before receiving the 201... \n",
|
| 261 |
-
"1 0.95 If any professor is reading this: please do no... \n",
|
| 262 |
-
"2 0.95 If any professor is reading this: please do no... \n",
|
| 263 |
-
"3 0.95 If any professor is reading this: please do no... \n",
|
| 264 |
-
"4 0.95 If any professor is reading this: please do no... \n",
|
| 265 |
-
"... ... ... \n",
|
| 266 |
-
"348713 0.94 Can I get in trouble for giving my neighbor hi... \n",
|
| 267 |
-
"348714 0.94 Can I get in trouble for giving my neighbor hi... \n",
|
| 268 |
-
"348715 0.94 Can I get in trouble for giving my neighbor hi... \n",
|
| 269 |
-
"348716 0.94 Can I get in trouble for giving my neighbor hi... \n",
|
| 270 |
-
"348717 0.94 Can I get in trouble for giving my neighbor hi... \n",
|
| 271 |
-
"\n",
|
| 272 |
-
" score_A score_B human_ref_A \\\n",
|
| 273 |
-
"0 52 54 Currently wrapping up my PhD. There is a stark... \n",
|
| 274 |
-
"1 5 17 And when your teacher doesn't listen or pay at... \n",
|
| 275 |
-
"2 5 7 Profs can be oblivious? What’s new! \n",
|
| 276 |
-
"3 7 5 This sounds like a problem with a specific pro... \n",
|
| 277 |
-
"4 6 7 This would be totally unacceptable in my class... \n",
|
| 278 |
-
"... ... ... ... \n",
|
| 279 |
-
"348713 7 25 Just put up a fence. Legally he isn't responsi... \n",
|
| 280 |
-
"348714 2 25 If OP pays someone to clean his yard, and then... \n",
|
| 281 |
-
"348715 9 7 My observation is that both of you are idiots... \n",
|
| 282 |
-
"348716 9 7 My observation is that both of you are idiots... \n",
|
| 283 |
-
"348717 7 2 Capture his acts on camera. Collect and bag l... \n",
|
| 284 |
-
"\n",
|
| 285 |
-
" human_ref_B labels score_ratio \n",
|
| 286 |
-
"0 It’s ironic to me that research has shown that... 0 1.038462 \n",
|
| 287 |
-
"1 I'm pretty strict on time, to the point where ... 0 3.400000 \n",
|
| 288 |
-
"2 This sounds like a problem with a specific pro... 0 1.400000 \n",
|
| 289 |
-
"3 And when your teacher doesn't listen or pay at... 1 1.400000 \n",
|
| 290 |
-
"4 This sounds like a problem with a specific pro... 0 1.166667 \n",
|
| 291 |
-
"... ... ... ... \n",
|
| 292 |
-
"348713 Whatever you do, don't cut his trees down. 0 3.571429 \n",
|
| 293 |
-
"348714 Whatever you do, don't cut his trees down. 0 12.500000 \n",
|
| 294 |
-
"348715 Are you Rand Paul's neighbor? https://www.gq.... 1 1.285714 \n",
|
| 295 |
-
"348716 Just put up a fence. Legally he isn't responsi... 1 1.285714 \n",
|
| 296 |
-
"348717 If OP pays someone to clean his yard, and then... 1 3.500000 \n",
|
| 297 |
-
"\n",
|
| 298 |
-
"[348718 rows x 8 columns]"
|
| 299 |
-
]
|
| 300 |
-
},
|
| 301 |
-
"execution_count": 46,
|
| 302 |
-
"metadata": {},
|
| 303 |
-
"output_type": "execute_result"
|
| 304 |
-
}
|
| 305 |
-
],
|
| 306 |
-
"source": [
|
| 307 |
-
"# df['response_length'] = df['history'].apply(len)\n",
|
| 308 |
-
"# df['label'] = df['response_length'].apply(lambda x: 'long' if x > 100 else 'short')\n",
|
| 309 |
-
"df.drop(columns=['post_id', 'domain', 'c_root_id_A', 'c_root_id_B', 'created_at_utc_A', 'created_at_utc_B', 'seconds_difference'])"
|
| 310 |
-
]
|
| 311 |
-
},
|
| 312 |
-
{
|
| 313 |
-
"cell_type": "code",
|
| 314 |
-
"execution_count": 47,
|
| 315 |
-
"metadata": {},
|
| 316 |
-
"outputs": [
|
| 317 |
-
{
|
| 318 |
-
"name": "stderr",
|
| 319 |
-
"output_type": "stream",
|
| 320 |
-
"text": [
|
| 321 |
-
"/Users/riddhib/.pyenv/versions/3.10.13/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:1617: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be deprecated in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
|
| 322 |
-
" warnings.warn(\n"
|
| 323 |
-
]
|
| 324 |
-
}
|
| 325 |
-
],
|
| 326 |
-
"source": [
|
| 327 |
-
"model = AutoModelForCausalLMWithValueHead.from_pretrained(\"gpt2\")\n",
|
| 328 |
-
"ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(\"gpt2\")\n",
|
| 329 |
-
"tokenizer = GPT2Tokenizer.from_pretrained(\"gpt2\")\n",
|
| 330 |
-
"tokenizer.pad_token = tokenizer.eos_token"
|
| 331 |
-
]
|
| 332 |
-
},
|
| 333 |
-
{
|
| 334 |
-
"cell_type": "code",
|
| 335 |
-
"execution_count": 48,
|
| 336 |
-
"metadata": {},
|
| 337 |
-
"outputs": [],
|
| 338 |
-
"source": [
|
| 339 |
-
"from trl_rlhf_data import runner, ScriptArguments\n",
|
| 340 |
-
"import re\n",
|
| 341 |
-
"from dataclasses import dataclass\n",
|
| 342 |
-
"from typing import Dict, List, Optional\n",
|
| 343 |
-
"\n",
|
| 344 |
-
"from datasets import load_dataset\n",
|
| 345 |
-
"from transformers import HfArgumentParser"
|
| 346 |
-
]
|
| 347 |
-
},
|
| 348 |
-
{
|
| 349 |
-
"cell_type": "code",
|
| 350 |
-
"execution_count": 49,
|
| 351 |
-
"metadata": {},
|
| 352 |
-
"outputs": [
|
| 353 |
-
{
|
| 354 |
-
"ename": "TypeError",
|
| 355 |
-
"evalue": "runner() takes 0 positional arguments but 1 was given",
|
| 356 |
-
"output_type": "error",
|
| 357 |
-
"traceback": [
|
| 358 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
| 359 |
-
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
| 360 |
-
"Cell \u001b[0;32mIn[49], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mrunner\u001b[49m\u001b[43m(\u001b[49m\u001b[43mScriptArguments\u001b[49m\u001b[43m)\u001b[49m\n",
|
| 361 |
-
"\u001b[0;31mTypeError\u001b[0m: runner() takes 0 positional arguments but 1 was given"
|
| 362 |
-
]
|
| 363 |
-
}
|
| 364 |
-
],
|
| 365 |
-
"source": [
|
| 366 |
-
"dataset = runner(ScriptArguments)"
|
| 367 |
-
]
|
| 368 |
-
},
|
| 369 |
-
{
|
| 370 |
-
"cell_type": "code",
|
| 371 |
-
"execution_count": null,
|
| 372 |
-
"metadata": {},
|
| 373 |
-
"outputs": [],
|
| 374 |
-
"source": []
|
| 375 |
-
}
|
| 376 |
-
],
|
| 377 |
-
"metadata": {
|
| 378 |
-
"kernelspec": {
|
| 379 |
-
"display_name": "Python 3",
|
| 380 |
-
"language": "python",
|
| 381 |
-
"name": "python3"
|
| 382 |
-
},
|
| 383 |
-
"language_info": {
|
| 384 |
-
"codemirror_mode": {
|
| 385 |
-
"name": "ipython",
|
| 386 |
-
"version": 3
|
| 387 |
-
},
|
| 388 |
-
"file_extension": ".py",
|
| 389 |
-
"mimetype": "text/x-python",
|
| 390 |
-
"name": "python",
|
| 391 |
-
"nbconvert_exporter": "python",
|
| 392 |
-
"pygments_lexer": "ipython3",
|
| 393 |
-
"version": "3.10.13"
|
| 394 |
-
}
|
| 395 |
-
},
|
| 396 |
-
"nbformat": 4,
|
| 397 |
-
"nbformat_minor": 2
|
| 398 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ml/kto.py
DELETED
|
@@ -1,117 +0,0 @@
|
|
| 1 |
-
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
"""
|
| 16 |
-
Run the KTO training script with the commands below. In general, the optimal configuration for KTO will be similar to that of DPO.
|
| 17 |
-
|
| 18 |
-
# Full training:
|
| 19 |
-
python examples/scripts/kto.py \
|
| 20 |
-
--dataset_name trl-lib/kto-mix-14k \
|
| 21 |
-
--model_name_or_path=trl-lib/qwen1.5-1.8b-sft \
|
| 22 |
-
--per_device_train_batch_size 16 \
|
| 23 |
-
--num_train_epochs 1 \
|
| 24 |
-
--learning_rate 5e-7 \
|
| 25 |
-
--lr_scheduler_type=cosine \
|
| 26 |
-
--gradient_accumulation_steps 1 \
|
| 27 |
-
--logging_steps 10 \
|
| 28 |
-
--eval_steps 500 \
|
| 29 |
-
--output_dir=kto-aligned-model \
|
| 30 |
-
--warmup_ratio 0.1 \
|
| 31 |
-
--report_to wandb \
|
| 32 |
-
--bf16 \
|
| 33 |
-
--logging_first_step
|
| 34 |
-
|
| 35 |
-
# QLoRA:
|
| 36 |
-
python examples/scripts/kto.py \
|
| 37 |
-
--dataset_name trl-lib/kto-mix-14k \
|
| 38 |
-
--model_name_or_path=trl-lib/qwen1.5-1.8b-sft \
|
| 39 |
-
--per_device_train_batch_size 8 \
|
| 40 |
-
--num_train_epochs 1 \
|
| 41 |
-
--learning_rate 5e-7 \
|
| 42 |
-
--lr_scheduler_type=cosine \
|
| 43 |
-
--gradient_accumulation_steps 1 \
|
| 44 |
-
--logging_steps 10 \
|
| 45 |
-
--eval_steps 500 \
|
| 46 |
-
--output_dir=kto-aligned-model-lora \
|
| 47 |
-
--warmup_ratio 0.1 \
|
| 48 |
-
--report_to wandb \
|
| 49 |
-
--bf16 \
|
| 50 |
-
--logging_first_step \
|
| 51 |
-
--use_peft \
|
| 52 |
-
--load_in_4bit \
|
| 53 |
-
--lora_target_modules=all-linear \
|
| 54 |
-
--lora_r=16 \
|
| 55 |
-
--lora_alpha=16
|
| 56 |
-
"""
|
| 57 |
-
|
| 58 |
-
from datasets import load_dataset
|
| 59 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
| 60 |
-
|
| 61 |
-
from trl import (
|
| 62 |
-
KTOConfig,
|
| 63 |
-
KTOTrainer,
|
| 64 |
-
ModelConfig,
|
| 65 |
-
ScriptArguments,
|
| 66 |
-
get_peft_config,
|
| 67 |
-
setup_chat_format,
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
if __name__ == "__main__":
|
| 72 |
-
parser = HfArgumentParser((ScriptArguments, KTOConfig, ModelConfig))
|
| 73 |
-
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
|
| 74 |
-
|
| 75 |
-
# Load a pretrained model
|
| 76 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 77 |
-
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
| 78 |
-
)
|
| 79 |
-
ref_model = AutoModelForCausalLM.from_pretrained(
|
| 80 |
-
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 84 |
-
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
| 85 |
-
)
|
| 86 |
-
if tokenizer.pad_token is None:
|
| 87 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 88 |
-
|
| 89 |
-
# If we are aligning a base model, we use ChatML as the default template
|
| 90 |
-
if tokenizer.chat_template is None:
|
| 91 |
-
model, tokenizer = setup_chat_format(model, tokenizer)
|
| 92 |
-
|
| 93 |
-
# Load the dataset
|
| 94 |
-
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
|
| 95 |
-
|
| 96 |
-
# Initialize the KTO trainer
|
| 97 |
-
trainer = KTOTrainer(
|
| 98 |
-
model,
|
| 99 |
-
ref_model,
|
| 100 |
-
args=training_args,
|
| 101 |
-
train_dataset=dataset[script_args.dataset_train_split],
|
| 102 |
-
eval_dataset=(
|
| 103 |
-
dataset[script_args.dataset_test_split]
|
| 104 |
-
if training_args.eval_strategy != "no"
|
| 105 |
-
else None
|
| 106 |
-
),
|
| 107 |
-
processing_class=tokenizer,
|
| 108 |
-
peft_config=get_peft_config(model_args),
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
# Train and push the model to the Hub
|
| 112 |
-
trainer.train()
|
| 113 |
-
|
| 114 |
-
# Save and push to hub
|
| 115 |
-
trainer.save_model(training_args.output_dir)
|
| 116 |
-
if training_args.push_to_hub:
|
| 117 |
-
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ml/kto_dataset_processor.py
CHANGED
|
@@ -1,65 +1,210 @@
|
|
| 1 |
-
from datasets import
|
| 2 |
import pandas as pd
|
| 3 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
| 8 |
-
Processes the
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
Returns:
|
| 12 |
-
dict: A dictionary containing the
|
| 13 |
-
|
|
|
|
|
|
|
| 14 |
"""
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
data_points.append({
|
| 35 |
-
"prompt": example["prompt"],
|
| 36 |
-
"completion": rejected_completion.strip(),
|
| 37 |
-
"label": False
|
| 38 |
-
})
|
| 39 |
-
return data_points
|
| 40 |
-
|
| 41 |
-
# Process train and test splits
|
| 42 |
-
train_data = []
|
| 43 |
-
test_data = []
|
| 44 |
-
|
| 45 |
-
for example in train_prefs:
|
| 46 |
-
train_data.extend(transform_data(example))
|
| 47 |
-
|
| 48 |
-
for example in test_prefs:
|
| 49 |
-
test_data.extend(transform_data(example))
|
| 50 |
-
|
| 51 |
-
# Convert unified data to DataFrames
|
| 52 |
-
train_df = pd.DataFrame(train_data)
|
| 53 |
-
test_df = pd.DataFrame(test_data)
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# Convert to Hugging Face Dataset
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
|
|
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import Dataset, load_dataset
|
| 2 |
import pandas as pd
|
| 3 |
+
from sklearn.model_selection import train_test_split
|
| 4 |
+
import json
|
| 5 |
+
from ipdb import set_trace as st
|
| 6 |
+
from transformers import AutoTokenizer
|
| 7 |
+
from enum import Enum
|
| 8 |
|
| 9 |
+
class SupportedLanguages(str, Enum):
|
| 10 |
+
"""Enumeration of supported languages"""
|
| 11 |
+
ENGLISH = "English"
|
| 12 |
+
DUTCH = "Dutch"
|
| 13 |
+
ITALIAN = "Italian"
|
| 14 |
+
SPANISH = "Spanish"
|
| 15 |
+
FRENCH = "French"
|
| 16 |
+
GERMAN = "German"
|
| 17 |
+
PORTUGUESE = "Portuguese"
|
| 18 |
+
RUSSIAN = "Russian"
|
| 19 |
+
CHINESE = "Chinese"
|
| 20 |
+
JAPANESE = "Japanese"
|
| 21 |
+
KOREAN = "Korean"
|
| 22 |
|
| 23 |
+
def transform_conversation(
|
| 24 |
+
entry: dict,
|
| 25 |
+
model_name: str,
|
| 26 |
+
max_history_turns: int = 10,
|
| 27 |
+
max_history_tokens: int = 4000
|
| 28 |
+
) -> list:
|
| 29 |
+
"""Transform conversation into KTO format with history"""
|
| 30 |
+
data_points = []
|
| 31 |
+
conversation = entry["conversation"]
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 33 |
+
|
| 34 |
+
for i, message in enumerate(conversation):
|
| 35 |
+
# Only create data points for assistant messages that have ratings
|
| 36 |
+
if message["role"] != "assistant" or message["rating"] not in [1, -1]:
|
| 37 |
+
continue
|
| 38 |
+
|
| 39 |
+
# Get previous messages up to limits
|
| 40 |
+
formatted_history = []
|
| 41 |
+
formatted_prompt = ""
|
| 42 |
+
tokens = 0
|
| 43 |
+
pairs = 0 # Count complete user/assistant pairs
|
| 44 |
+
|
| 45 |
+
# Start from the current message and work backwards
|
| 46 |
+
current_idx = i - 1
|
| 47 |
+
while current_idx >= 0 and pairs < max_history_turns:
|
| 48 |
+
# We need both user and assistant messages to form a pair
|
| 49 |
+
if current_idx > 0 and conversation[current_idx]["role"] == "assistant" and conversation[current_idx-1]["role"] == "user":
|
| 50 |
+
# Add the pair to history
|
| 51 |
+
formatted_history.insert(0, conversation[current_idx-1]) # user
|
| 52 |
+
formatted_history.insert(1, conversation[current_idx]) # assistant
|
| 53 |
+
|
| 54 |
+
# Check token limit
|
| 55 |
+
try:
|
| 56 |
+
current_formatted = tokenizer.apply_chat_template(formatted_history, tokenize=False)
|
| 57 |
+
current_tokens = len(tokenizer.encode(current_formatted))
|
| 58 |
+
|
| 59 |
+
if current_tokens > max_history_tokens:
|
| 60 |
+
formatted_history = formatted_history[2:] # Remove the oldest pair
|
| 61 |
+
break
|
| 62 |
+
|
| 63 |
+
formatted_prompt = current_formatted
|
| 64 |
+
tokens = current_tokens
|
| 65 |
+
pairs += 1
|
| 66 |
+
current_idx -= 2
|
| 67 |
+
except Exception:
|
| 68 |
+
# If template application fails, remove the last added pair
|
| 69 |
+
formatted_history = formatted_history[2:]
|
| 70 |
+
break
|
| 71 |
+
else:
|
| 72 |
+
current_idx -= 1
|
| 73 |
+
|
| 74 |
+
# Add the final user message that prompted the rated response
|
| 75 |
+
if i > 0 and conversation[i-1]["role"] == "user":
|
| 76 |
+
last_history = formatted_history + [conversation[i-1]]
|
| 77 |
+
try:
|
| 78 |
+
formatted_prompt = tokenizer.apply_chat_template(last_history, tokenize=False)
|
| 79 |
+
except Exception:
|
| 80 |
+
# If template application fails, use the previous valid prompt
|
| 81 |
+
pass
|
| 82 |
+
|
| 83 |
+
data_points.append({
|
| 84 |
+
"prompt": formatted_prompt.strip(),
|
| 85 |
+
"completion": message["content"].strip(),
|
| 86 |
+
"label": message["rating"] == 1,
|
| 87 |
+
"timestamp": entry["timestamp"],
|
| 88 |
+
"session_id": entry["session_id"],
|
| 89 |
+
"conversation_id": entry["conversation_id"],
|
| 90 |
+
"language": entry["language"]
|
| 91 |
+
})
|
| 92 |
+
|
| 93 |
+
return data_points
|
| 94 |
+
|
| 95 |
+
def process_feel_dataset(
|
| 96 |
+
language: str,
|
| 97 |
+
model_name: str = "CohereForAI/aya-expanse-8b",
|
| 98 |
+
max_history_turns: int = 10,
|
| 99 |
+
max_history_tokens: int = 4000
|
| 100 |
+
):
|
| 101 |
"""
|
| 102 |
+
Processes the feel dataset into a format suitable for KTO training using TRL.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
language: Language to filter the dataset for (must be one of SupportedLanguages)
|
| 106 |
+
model_name: Name of the model to format for
|
| 107 |
+
max_history_turns: Maximum number of previous turns to include in history
|
| 108 |
+
max_history_tokens: Maximum number of tokens allowed in history
|
| 109 |
|
| 110 |
Returns:
|
| 111 |
+
dict: A dictionary containing the 'train' and 'test' splits of the dataset in KTO format
|
| 112 |
+
|
| 113 |
+
Raises:
|
| 114 |
+
ValueError: If language is not provided or not in SupportedLanguages
|
| 115 |
"""
|
| 116 |
+
# Validate language
|
| 117 |
+
if not language:
|
| 118 |
+
raise ValueError("Language parameter is required")
|
| 119 |
+
|
| 120 |
+
try:
|
| 121 |
+
# Validate that it's a supported language
|
| 122 |
+
SupportedLanguages(language)
|
| 123 |
+
except ValueError:
|
| 124 |
+
supported_langs = "\n- ".join([lang.value for lang in SupportedLanguages])
|
| 125 |
+
raise ValueError(
|
| 126 |
+
f"Invalid language: '{language}'\n"
|
| 127 |
+
f"Supported languages are:\n- {supported_langs}"
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Load feel dataset from HuggingFace
|
| 131 |
+
feel_dataset = load_dataset("feel-fl/feel-feedback")["train"]
|
| 132 |
+
|
| 133 |
+
# Filter dataset by language
|
| 134 |
+
feel_dataset = feel_dataset.filter(lambda x: x["language"] == language)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
if len(feel_dataset) == 0:
|
| 137 |
+
raise ValueError(f"No data found for language: {language}")
|
| 138 |
+
|
| 139 |
+
kto_data = []
|
| 140 |
+
|
| 141 |
+
# Process all conversations in the filtered dataset
|
| 142 |
+
for entry in feel_dataset:
|
| 143 |
+
kto_data.extend(transform_conversation(
|
| 144 |
+
entry,
|
| 145 |
+
model_name,
|
| 146 |
+
max_history_turns,
|
| 147 |
+
max_history_tokens
|
| 148 |
+
))
|
| 149 |
+
|
| 150 |
+
if len(kto_data) == 0:
|
| 151 |
+
raise ValueError(f"No valid training examples found for language: {language}")
|
| 152 |
+
|
| 153 |
+
# Convert to DataFrame
|
| 154 |
+
kto_df = pd.DataFrame(kto_data)
|
| 155 |
+
|
| 156 |
+
# Split into train and test sets (70% train, 30% test)
|
| 157 |
+
train_df, test_df = train_test_split(kto_df, test_size=0.3, random_state=42)
|
| 158 |
+
|
| 159 |
+
# Reset index to remove '__index_level_0__'
|
| 160 |
+
train_df = train_df.reset_index(drop=True)
|
| 161 |
+
test_df = test_df.reset_index(drop=True)
|
| 162 |
|
| 163 |
# Convert to Hugging Face Dataset
|
| 164 |
+
train_dataset = Dataset.from_pandas(train_df)
|
| 165 |
+
test_dataset = Dataset.from_pandas(test_df)
|
| 166 |
|
| 167 |
+
print(f"Processed {len(kto_data)} examples for language: {language}")
|
| 168 |
+
print(f"Train set size: {len(train_dataset)}")
|
| 169 |
+
print(f"Test set size: {len(test_dataset)}")
|
| 170 |
|
| 171 |
+
return {"train": train_dataset, "test": test_dataset}
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
| 174 |
+
# Process the dataset
|
| 175 |
+
datasets = process_feel_dataset("English")
|
| 176 |
+
|
| 177 |
+
# Print distribution of positive/negative labels
|
| 178 |
+
train_labels = datasets['train']['label']
|
| 179 |
+
test_labels = datasets['test']['label']
|
| 180 |
+
|
| 181 |
+
print("\nLabel Distribution:")
|
| 182 |
+
print("Train set:")
|
| 183 |
+
print(f"Positive feedback: {sum(train_labels)}")
|
| 184 |
+
print(f"Negative feedback: {len(train_labels) - sum(train_labels)}")
|
| 185 |
+
print(f"Positive ratio: {sum(train_labels)/len(train_labels):.2%}")
|
| 186 |
+
|
| 187 |
+
print("\nTest set:")
|
| 188 |
+
print(f"Positive feedback: {sum(test_labels)}")
|
| 189 |
+
print(f"Negative feedback: {len(test_labels) - sum(test_labels)}")
|
| 190 |
+
print(f"Positive ratio: {sum(test_labels)/len(test_labels):.2%}")
|
| 191 |
+
|
| 192 |
+
# Load original FEEL dataset
|
| 193 |
+
feel_dataset = load_dataset("feel-fl/feel-feedback", split="train")
|
| 194 |
+
|
| 195 |
+
# Print one original conversation
|
| 196 |
+
print("\nOriginal conversation from FEEL dataset:")
|
| 197 |
+
print(json.dumps(feel_dataset[0], indent=2))
|
| 198 |
+
|
| 199 |
+
# Print sample entries from processed dataset
|
| 200 |
+
print("\nSample entries from processed KTO dataset:")
|
| 201 |
+
print("\n" + "="*80 + "\nTRAIN SET SAMPLES\n" + "="*80)
|
| 202 |
+
|
| 203 |
+
# Export datasets to CSV
|
| 204 |
+
train_df = datasets['train'].to_pandas()
|
| 205 |
+
test_df = datasets['test'].to_pandas()
|
| 206 |
+
|
| 207 |
+
train_df.to_csv('kto_train_dataset.csv', index=False)
|
| 208 |
+
test_df.to_csv('kto_test_dataset.csv', index=False)
|
| 209 |
+
|
| 210 |
+
print("\nDatasets exported to 'kto_train_dataset.csv' and 'kto_test_dataset.csv'")
|
ml/{kto_pipeline.py → trainer.py}
RENAMED
|
@@ -1,35 +1,58 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from dataclasses import dataclass
|
| 3 |
from accelerate import PartialState
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
| 5 |
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, maybe_unpair_preference_dataset, setup_chat_format
|
| 6 |
-
from kto_dataset_processor import
|
| 7 |
from datetime import datetime
|
| 8 |
import wandb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
####################################
|
| 11 |
# CONFIGURATION
|
| 12 |
####################################
|
| 13 |
|
|
|
|
| 14 |
@dataclass
|
| 15 |
class ScriptArguments:
|
| 16 |
"""
|
| 17 |
Configuration for the script.
|
| 18 |
"""
|
| 19 |
-
process_dataset_func: callable =
|
| 20 |
-
checkpoint_path: str = None
|
| 21 |
-
push_to_hub: bool =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
@dataclass
|
| 24 |
class ModelArguments(ModelConfig):
|
| 25 |
"""
|
| 26 |
Configuration for the model.
|
| 27 |
"""
|
| 28 |
-
model_name: str = "
|
| 29 |
use_peft: bool = True
|
| 30 |
lora_target_modules: str = "all-linear"
|
| 31 |
lora_r: int = 16
|
| 32 |
lora_alpha: int = 16
|
|
|
|
| 33 |
|
| 34 |
@dataclass
|
| 35 |
class TrainingArguments(KTOConfig):
|
|
@@ -38,7 +61,7 @@ class TrainingArguments(KTOConfig):
|
|
| 38 |
"""
|
| 39 |
output_dir: str = f"kto_{ModelArguments.model_name}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
|
| 40 |
num_train_epochs: int = 1
|
| 41 |
-
per_device_train_batch_size: int = 4
|
| 42 |
learning_rate: float = 5e-7
|
| 43 |
lr_scheduler_type: str = "cosine"
|
| 44 |
gradient_accumulation_steps: int = 1
|
|
@@ -48,8 +71,6 @@ class TrainingArguments(KTOConfig):
|
|
| 48 |
bf16: bool = True
|
| 49 |
logging_first_step: bool = True
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
# Initialize configurations
|
| 54 |
script_args = ScriptArguments()
|
| 55 |
training_args = TrainingArguments()
|
|
@@ -61,7 +82,7 @@ model_args = ModelArguments()
|
|
| 61 |
|
| 62 |
def load_model_and_tokenizer(model_args):
|
| 63 |
"""
|
| 64 |
-
Load
|
| 65 |
"""
|
| 66 |
model = AutoModelForCausalLM.from_pretrained(
|
| 67 |
model_args.model_name,
|
|
@@ -74,74 +95,97 @@ def load_model_and_tokenizer(model_args):
|
|
| 74 |
trust_remote_code=model_args.trust_remote_code
|
| 75 |
)
|
| 76 |
|
| 77 |
-
# Set pad token if missing
|
| 78 |
if tokenizer.pad_token is None:
|
| 79 |
tokenizer.pad_token = tokenizer.eos_token
|
| 80 |
|
| 81 |
-
# Setup chat format if not
|
| 82 |
-
if tokenizer
|
| 83 |
model, tokenizer = setup_chat_format(model, tokenizer)
|
| 84 |
|
|
|
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
# tokens = tokenizer.tokenize(text)
|
| 97 |
-
# all_tokens.update(tokens)
|
| 98 |
-
# vocab = set(tokenizer.get_vocab().keys())
|
| 99 |
-
# unknown_tokens = all_tokens - vocab
|
| 100 |
-
# return unknown_tokens
|
| 101 |
|
|
|
|
|
|
|
| 102 |
|
| 103 |
-
#
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
# print(f"Found {len(unknown_tokens)} unknown tokens: {list(unknown_tokens)[:10]}...")
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
# model.resize_token_embeddings(len(tokenizer))
|
| 117 |
-
# print(f"Tokenizer vocabulary size after extension: {len(tokenizer)}")
|
| 118 |
|
|
|
|
|
|
|
| 119 |
|
| 120 |
####################################
|
| 121 |
# MAIN LOGIC
|
| 122 |
####################################
|
| 123 |
|
| 124 |
def main():
|
| 125 |
-
# Initialize wandb
|
| 126 |
wandb.init(project="kto")
|
| 127 |
|
| 128 |
-
#
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
model, tokenizer = load_model_and_tokenizer(model_args)
|
| 131 |
ref_model, _ = load_model_and_tokenizer(model_args)
|
| 132 |
print("Models and tokenizer loaded.")
|
| 133 |
|
| 134 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
print("Processing dataset...")
|
| 136 |
-
dataset =
|
| 137 |
print("Dataset processed.")
|
| 138 |
|
| 139 |
-
# # Extend tokenizer with missing tokens
|
| 140 |
-
# print("Adding unknown tokens to tokenizer...")
|
| 141 |
-
# add_tokens_to_tokenizer(tokenizer, model, dataset)
|
| 142 |
-
# print("Tokenizer updated.")
|
| 143 |
-
|
| 144 |
-
# Initialize trainer
|
| 145 |
print("Initializing trainer...")
|
| 146 |
trainer = KTOTrainer(
|
| 147 |
model=model,
|
|
@@ -149,8 +193,8 @@ def main():
|
|
| 149 |
args=training_args,
|
| 150 |
train_dataset=dataset["train"],
|
| 151 |
eval_dataset=dataset["test"],
|
| 152 |
-
|
| 153 |
-
peft_config=
|
| 154 |
)
|
| 155 |
|
| 156 |
# Training
|
|
@@ -182,10 +226,29 @@ def main():
|
|
| 182 |
"step": metrics.get("step")
|
| 183 |
})
|
| 184 |
|
| 185 |
-
# Save
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
if script_args.push_to_hub:
|
| 188 |
-
|
|
|
|
|
|
|
| 189 |
|
| 190 |
print("Process completed.")
|
| 191 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
import torch
|
| 3 |
from dataclasses import dataclass
|
| 4 |
from accelerate import PartialState
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
|
| 6 |
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, maybe_unpair_preference_dataset, setup_chat_format
|
| 7 |
+
from kto_dataset_processor import process_feel_dataset, SupportedLanguages
|
| 8 |
from datetime import datetime
|
| 9 |
import wandb
|
| 10 |
+
from enum import Enum
|
| 11 |
+
from typing import Optional
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# PEFT library: attach and load adapters
|
| 16 |
+
from peft import get_peft_model, PeftModel
|
| 17 |
|
| 18 |
####################################
|
| 19 |
# CONFIGURATION
|
| 20 |
####################################
|
| 21 |
|
| 22 |
+
|
| 23 |
@dataclass
|
| 24 |
class ScriptArguments:
|
| 25 |
"""
|
| 26 |
Configuration for the script.
|
| 27 |
"""
|
| 28 |
+
process_dataset_func: callable = process_feel_dataset
|
| 29 |
+
checkpoint_path: str = None
|
| 30 |
+
push_to_hub: bool = True
|
| 31 |
+
language: str = "English" # Default to English
|
| 32 |
+
|
| 33 |
+
def __post_init__(self):
|
| 34 |
+
"""Validate the language after initialization"""
|
| 35 |
+
try:
|
| 36 |
+
# This will raise ValueError if language is not in the enum
|
| 37 |
+
SupportedLanguages(self.language)
|
| 38 |
+
except ValueError:
|
| 39 |
+
supported_langs = "\n- ".join([lang.value for lang in SupportedLanguages])
|
| 40 |
+
raise ValueError(
|
| 41 |
+
f"Invalid language: '{self.language}'\n"
|
| 42 |
+
f"Supported languages are:\n- {supported_langs}"
|
| 43 |
+
)
|
| 44 |
|
| 45 |
@dataclass
|
| 46 |
class ModelArguments(ModelConfig):
|
| 47 |
"""
|
| 48 |
Configuration for the model.
|
| 49 |
"""
|
| 50 |
+
model_name: str = "CohereForAI/aya-expanse-8b"
|
| 51 |
use_peft: bool = True
|
| 52 |
lora_target_modules: str = "all-linear"
|
| 53 |
lora_r: int = 16
|
| 54 |
lora_alpha: int = 16
|
| 55 |
+
trust_remote_code: bool = True
|
| 56 |
|
| 57 |
@dataclass
|
| 58 |
class TrainingArguments(KTOConfig):
|
|
|
|
| 61 |
"""
|
| 62 |
output_dir: str = f"kto_{ModelArguments.model_name}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
|
| 63 |
num_train_epochs: int = 1
|
| 64 |
+
per_device_train_batch_size: int = 4
|
| 65 |
learning_rate: float = 5e-7
|
| 66 |
lr_scheduler_type: str = "cosine"
|
| 67 |
gradient_accumulation_steps: int = 1
|
|
|
|
| 71 |
bf16: bool = True
|
| 72 |
logging_first_step: bool = True
|
| 73 |
|
|
|
|
|
|
|
| 74 |
# Initialize configurations
|
| 75 |
script_args = ScriptArguments()
|
| 76 |
training_args = TrainingArguments()
|
|
|
|
| 82 |
|
| 83 |
def load_model_and_tokenizer(model_args):
|
| 84 |
"""
|
| 85 |
+
Load the base model and tokenizer from the Hugging Face Hub.
|
| 86 |
"""
|
| 87 |
model = AutoModelForCausalLM.from_pretrained(
|
| 88 |
model_args.model_name,
|
|
|
|
| 95 |
trust_remote_code=model_args.trust_remote_code
|
| 96 |
)
|
| 97 |
|
| 98 |
+
# Set pad token if it is missing
|
| 99 |
if tokenizer.pad_token is None:
|
| 100 |
tokenizer.pad_token = tokenizer.eos_token
|
| 101 |
|
| 102 |
+
# Setup chat format if not available on the tokenizer
|
| 103 |
+
if not getattr(tokenizer, "chat_template", None):
|
| 104 |
model, tokenizer = setup_chat_format(model, tokenizer)
|
| 105 |
|
| 106 |
+
return model, tokenizer
|
| 107 |
|
| 108 |
+
def get_adapter_path(model_name: str, language: str, timestamp: str = None) -> Path:
|
| 109 |
+
"""
|
| 110 |
+
Generate standardized adapter path.
|
| 111 |
+
If timestamp is None, returns the base language directory.
|
| 112 |
+
Otherwise, returns specific adapter version path.
|
| 113 |
|
| 114 |
+
Format: adapters/{model_name}/{language}/version_{timestamp}
|
| 115 |
+
"""
|
| 116 |
+
# Clean model name (remove slashes, etc.)
|
| 117 |
+
clean_model_name = model_name.replace('/', '_')
|
| 118 |
|
| 119 |
+
base_path = Path("adapters") / clean_model_name / language
|
| 120 |
+
if timestamp:
|
| 121 |
+
return base_path / f"version_{timestamp}"
|
| 122 |
+
return base_path
|
| 123 |
|
| 124 |
+
def load_latest_adapter(model, model_name: str, language: str) -> tuple[PeftModel, str]:
|
| 125 |
+
"""
|
| 126 |
+
Load the most recent adapter for given model and language.
|
| 127 |
+
Returns: (loaded_model, timestamp of loaded adapter)
|
| 128 |
+
"""
|
| 129 |
+
adapter_base = get_adapter_path(model_name, language)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
if not adapter_base.exists():
|
| 132 |
+
return None, None
|
| 133 |
|
| 134 |
+
# Get all version directories and sort by timestamp
|
| 135 |
+
versions = sorted(
|
| 136 |
+
[d for d in adapter_base.glob("version_*")],
|
| 137 |
+
key=lambda x: x.name,
|
| 138 |
+
reverse=True
|
| 139 |
+
)
|
| 140 |
|
| 141 |
+
if not versions:
|
| 142 |
+
return None, None
|
|
|
|
| 143 |
|
| 144 |
+
latest_version = versions[0]
|
| 145 |
+
timestamp = latest_version.name.replace("version_", "")
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
model = PeftModel.from_pretrained(model, latest_version, is_trainable=True)
|
| 148 |
+
return model, timestamp
|
| 149 |
|
| 150 |
####################################
|
| 151 |
# MAIN LOGIC
|
| 152 |
####################################
|
| 153 |
|
| 154 |
def main():
|
| 155 |
+
# Initialize wandb for logging
|
| 156 |
wandb.init(project="kto")
|
| 157 |
|
| 158 |
+
# Get timestamp at start of training
|
| 159 |
+
training_timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
|
| 160 |
+
|
| 161 |
+
print("Loading base model and tokenizer...")
|
| 162 |
model, tokenizer = load_model_and_tokenizer(model_args)
|
| 163 |
ref_model, _ = load_model_and_tokenizer(model_args)
|
| 164 |
print("Models and tokenizer loaded.")
|
| 165 |
|
| 166 |
+
# Load existing adapter or create new one
|
| 167 |
+
loaded_model, previous_timestamp = load_latest_adapter(
|
| 168 |
+
model,
|
| 169 |
+
model_args.model_name,
|
| 170 |
+
script_args.language
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
if loaded_model is not None:
|
| 174 |
+
model = loaded_model
|
| 175 |
+
print(f"Loaded existing adapter trained at {previous_timestamp}")
|
| 176 |
+
else:
|
| 177 |
+
# Initialize new LoRA adapter
|
| 178 |
+
peft_config = get_peft_config(model_args)
|
| 179 |
+
model = get_peft_model(model, peft_config)
|
| 180 |
+
print("Initialized new adapter")
|
| 181 |
+
|
| 182 |
+
# -----------------------------
|
| 183 |
+
# Data Preparation and Training
|
| 184 |
+
# -----------------------------
|
| 185 |
print("Processing dataset...")
|
| 186 |
+
dataset = script_args.process_dataset_func(script_args.language)
|
| 187 |
print("Dataset processed.")
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
print("Initializing trainer...")
|
| 190 |
trainer = KTOTrainer(
|
| 191 |
model=model,
|
|
|
|
| 193 |
args=training_args,
|
| 194 |
train_dataset=dataset["train"],
|
| 195 |
eval_dataset=dataset["test"],
|
| 196 |
+
processing_class=tokenizer,
|
| 197 |
+
peft_config=peft_config,
|
| 198 |
)
|
| 199 |
|
| 200 |
# Training
|
|
|
|
| 226 |
"step": metrics.get("step")
|
| 227 |
})
|
| 228 |
|
| 229 |
+
# Save the adapter
|
| 230 |
+
adapter_path = get_adapter_path(
|
| 231 |
+
model_args.model_name,
|
| 232 |
+
script_args.language,
|
| 233 |
+
training_timestamp
|
| 234 |
+
)
|
| 235 |
+
adapter_path.parent.mkdir(parents=True, exist_ok=True)
|
| 236 |
+
|
| 237 |
+
print(f"Saving adapter to: {adapter_path}")
|
| 238 |
+
model.save_pretrained(adapter_path)
|
| 239 |
+
|
| 240 |
+
# Save metadata
|
| 241 |
+
metadata = AdapterMetadata(
|
| 242 |
+
training_timestamp=training_timestamp,
|
| 243 |
+
model_name=model_args.model_name,
|
| 244 |
+
language=script_args.language,
|
| 245 |
+
)
|
| 246 |
+
metadata.save(adapter_path / "metadata.json")
|
| 247 |
+
|
| 248 |
if script_args.push_to_hub:
|
| 249 |
+
repo_id = f"feel-fl/adapters/{model_args.model_name.replace('/', '_')}/{script_args.language}"
|
| 250 |
+
print(f"Pushing adapter to Hugging Face Hub at {repo_id}...")
|
| 251 |
+
model.push_to_hub(repo_id=repo_id)
|
| 252 |
|
| 253 |
print("Process completed.")
|
| 254 |
|