Spaces:
Running
on
A100
Running
on
A100
import pandas as pd | |
import numpy as np | |
# NOTE: names of preset cols may be different based on dataset, this is just a generalized pipeline | |
CHOSEN_COLUMN = 'chosen' # name of col with chosen responses | |
REJECTED_COLUMN = 'rejected' # name of col with rejected responses | |
COLUMNS_TO_DROP = ['metadata', 'timestamp', 'id'] # cols to remove | |
def transform_rlhf_dataset(df, chosen_col=CHOSEN_COLUMN, rejected_col=REJECTED_COLUMN, drop_cols=COLUMNS_TO_DROP): | |
""" | |
Parameters: | |
df (pandas.DataFrame): Input dataframe with chosen and rejected columns | |
chosen_col (str): Name of column containing chosen responses | |
rejected_col (str): Name of column containing rejected responses | |
drop_cols (list): List of column names to drop from the dataset | |
Returns: | |
pandas.DataFrame: Transformed dataset with 'text' and 'label' columns | |
""" | |
df = df.copy() | |
existing_cols_to_drop = [col for col in drop_cols if col in df.columns] | |
if existing_cols_to_drop: | |
df = df.drop(columns=existing_cols_to_drop) | |
preserved_cols = [col for col in df.columns if col not in [chosen_col, rejected_col]] | |
# two separate dataframes for liked and disliked | |
liked_df = df[[chosen_col]].copy() | |
liked_df.columns = ['text'] | |
liked_df['label'] = 'liked' | |
disliked_df = df[[rejected_col]].copy() | |
disliked_df.columns = ['text'] | |
disliked_df['label'] = 'disliked' | |
for col in preserved_cols: | |
liked_df[col] = df[col] | |
for col in preserved_cols: | |
disliked_df[col] = df[col] | |
# combine + shuffle | |
transformed_df = pd.concat([liked_df, disliked_df], ignore_index=True) | |
transformed_df = transformed_df.dropna(subset=['text']) | |
transformed_df = transformed_df.sample(frac=1).reset_index(drop=True) | |
# reordering | |
column_order = ['text', 'label'] + preserved_cols | |
transformed_df = transformed_df[column_order] | |
return transformed_df | |
def test_example(): | |
example_data = { | |
'chosen': ['This is a good response', 'Another good one'], | |
'rejected': ['This is a bad response', 'Another bad one'], | |
'metadata': ['meta1', 'meta2'], | |
'timestamp': ['2024-01-01', '2024-01-02'], | |
'id': [1, 2] | |
} | |
df = pd.DataFrame(example_data) | |
transformed_df = transform_rlhf_dataset( | |
df, | |
chosen_col='chosen', | |
rejected_col='rejected', | |
drop_cols=['metadata', 'id'] | |
) | |
print("Original shape:", df.shape) | |
print("\nTransformed shape:", transformed_df.shape) | |
print("\nTransformation sample:") | |
print(transformed_df.head()) | |
print("\nLabel distribution:") | |
print(transformed_df['label'].value_counts()) | |
if __name__ == "__main__": | |
test_example() |