Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Run the KTO training script with the commands below. In general, the optimal configuration for KTO will be similar to that of DPO. | |
# Full training: | |
python examples/scripts/kto.py \ | |
--dataset_name trl-lib/kto-mix-14k \ | |
--model_name_or_path=trl-lib/qwen1.5-1.8b-sft \ | |
--per_device_train_batch_size 16 \ | |
--num_train_epochs 1 \ | |
--learning_rate 5e-7 \ | |
--lr_scheduler_type=cosine \ | |
--gradient_accumulation_steps 1 \ | |
--logging_steps 10 \ | |
--eval_steps 500 \ | |
--output_dir=kto-aligned-model \ | |
--warmup_ratio 0.1 \ | |
--report_to wandb \ | |
--bf16 \ | |
--logging_first_step | |
# QLoRA: | |
python examples/scripts/kto.py \ | |
--dataset_name trl-lib/kto-mix-14k \ | |
--model_name_or_path=trl-lib/qwen1.5-1.8b-sft \ | |
--per_device_train_batch_size 8 \ | |
--num_train_epochs 1 \ | |
--learning_rate 5e-7 \ | |
--lr_scheduler_type=cosine \ | |
--gradient_accumulation_steps 1 \ | |
--logging_steps 10 \ | |
--eval_steps 500 \ | |
--output_dir=kto-aligned-model-lora \ | |
--warmup_ratio 0.1 \ | |
--report_to wandb \ | |
--bf16 \ | |
--logging_first_step \ | |
--use_peft \ | |
--load_in_4bit \ | |
--lora_target_modules=all-linear \ | |
--lora_r=16 \ | |
--lora_alpha=16 | |
""" | |
from datasets import load_dataset | |
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser | |
from trl import ( | |
KTOConfig, | |
KTOTrainer, | |
ModelConfig, | |
ScriptArguments, | |
get_peft_config, | |
setup_chat_format, | |
) | |
if __name__ == "__main__": | |
parser = HfArgumentParser((ScriptArguments, KTOConfig, ModelConfig)) | |
script_args, training_args, model_args = parser.parse_args_into_dataclasses() | |
# Load a pretrained model | |
model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
ref_model = AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
# If we are aligning a base model, we use ChatML as the default template | |
if tokenizer.chat_template is None: | |
model, tokenizer = setup_chat_format(model, tokenizer) | |
# Load the dataset | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
# Initialize the KTO trainer | |
trainer = KTOTrainer( | |
model, | |
ref_model, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=( | |
dataset[script_args.dataset_test_split] | |
if training_args.eval_strategy != "no" | |
else None | |
), | |
processing_class=tokenizer, | |
peft_config=get_peft_config(model_args), | |
) | |
# Train and push the model to the Hub | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |