Spaces:
Configuration error
Configuration error
File size: 7,222 Bytes
313814b 4bdd7f2 313814b 4bdd7f2 db7bf9a 313814b 4bdd7f2 313814b 4bdd7f2 313814b db7bf9a 313814b 4bdd7f2 313814b 4bdd7f2 313814b 9f56267 313814b db7bf9a 313814b db7bf9a 313814b 4bdd7f2 313814b 4bdd7f2 313814b 4bdd7f2 313814b 8ad3023 313814b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
from __future__ import annotations
import asyncio
import logging
import time
from contextlib import asynccontextmanager
from io import BytesIO
from typing import Annotated, Literal
from fastapi import (FastAPI, Form, Query, Response, UploadFile, WebSocket,
WebSocketDisconnect)
from fastapi.websockets import WebSocketState
from faster_whisper import WhisperModel
from faster_whisper.vad import VadOptions, get_speech_timestamps
from speaches import utils
from speaches.asr import FasterWhisperASR
from speaches.audio import AudioStream, audio_samples_from_file
from speaches.config import SAMPLES_PER_SECOND, Language, Model, config
from speaches.core import Transcription
from speaches.logger import logger
from speaches.server_models import (ResponseFormat, TranscriptionJsonResponse,
TranscriptionVerboseJsonResponse)
from speaches.transcriber import audio_transcriber
whisper: WhisperModel = None # type: ignore
@asynccontextmanager
async def lifespan(_: FastAPI):
global whisper
logging.debug(f"Loading {config.whisper.model}")
start = time.perf_counter()
whisper = WhisperModel(
config.whisper.model,
device=config.whisper.inference_device,
compute_type=config.whisper.compute_type,
)
end = time.perf_counter()
logger.debug(f"Loaded {config.whisper.model} loaded in {end - start:.2f} seconds")
yield
app = FastAPI(lifespan=lifespan)
@app.get("/health")
def health() -> Response:
return Response(status_code=200, content="Everything is peachy!")
# https://platform.openai.com/docs/api-reference/audio/createTranscription
# https://github.com/openai/openai-openapi/blob/master/openapi.yaml#L8915
@app.post("/v1/audio/transcriptions")
async def transcribe_file(
file: Annotated[UploadFile, Form()],
model: Annotated[Model, Form()] = config.whisper.model,
language: Annotated[Language | None, Form()] = None,
prompt: Annotated[str | None, Form()] = None,
response_format: Annotated[ResponseFormat, Form()] = ResponseFormat.JSON,
temperature: Annotated[float, Form()] = 0.0,
timestamp_granularities: Annotated[
list[Literal["segments"] | Literal["words"]],
Form(alias="timestamp_granularities[]"),
] = ["segments"],
):
assert (
model == config.whisper.model
), "Specifying a model that is different from the default is not supported yet."
segments, transcription_info = whisper.transcribe(
file.file,
language=language,
initial_prompt=prompt,
word_timestamps="words" in timestamp_granularities,
temperature=temperature,
)
segments = list(segments)
if response_format == ResponseFormat.TEXT:
return utils.segments_text(segments)
elif response_format == ResponseFormat.JSON:
return TranscriptionJsonResponse.from_segments(segments)
elif response_format == ResponseFormat.VERBOSE_JSON:
return TranscriptionVerboseJsonResponse.from_segments(
segments, transcription_info
)
async def audio_receiver(ws: WebSocket, audio_stream: AudioStream) -> None:
try:
while True:
bytes_ = await asyncio.wait_for(
ws.receive_bytes(), timeout=config.max_no_data_seconds
)
logger.debug(f"Received {len(bytes_)} bytes of audio data")
audio_samples = audio_samples_from_file(BytesIO(bytes_))
audio_stream.extend(audio_samples)
if audio_stream.duration - config.inactivity_window_seconds >= 0:
audio = audio_stream.after(
audio_stream.duration - config.inactivity_window_seconds
)
vad_opts = VadOptions(min_silence_duration_ms=500, speech_pad_ms=0)
# NOTE: This is a synchronous operation that runs every time new data is received.
# This shouldn't be an issue unless data is being received in tiny chunks or the user's machine is a potato.
timestamps = get_speech_timestamps(audio.data, vad_opts)
if len(timestamps) == 0:
logger.info(
f"No speech detected in the last {config.inactivity_window_seconds} seconds."
)
break
elif (
# last speech end time
config.inactivity_window_seconds
- timestamps[-1]["end"] / SAMPLES_PER_SECOND
>= config.max_inactivity_seconds
):
logger.info(
f"Not enough speech in the last {config.inactivity_window_seconds} seconds."
)
break
except asyncio.TimeoutError:
logger.info(
f"No data received in {config.max_no_data_seconds} seconds. Closing the connection."
)
except WebSocketDisconnect as e:
logger.info(f"Client disconnected: {e}")
audio_stream.close()
def format_transcription(
transcription: Transcription, response_format: ResponseFormat
) -> str:
if response_format == ResponseFormat.TEXT:
return transcription.text
elif response_format == ResponseFormat.JSON:
return TranscriptionJsonResponse.from_transcription(
transcription
).model_dump_json()
elif response_format == ResponseFormat.VERBOSE_JSON:
return TranscriptionVerboseJsonResponse.from_transcription(
transcription
).model_dump_json()
@app.websocket("/v1/audio/transcriptions")
async def transcribe_stream(
ws: WebSocket,
model: Annotated[Model, Query()] = config.whisper.model,
language: Annotated[Language | None, Query()] = None,
prompt: Annotated[str | None, Query()] = None,
response_format: Annotated[ResponseFormat, Query()] = ResponseFormat.JSON,
temperature: Annotated[float, Query()] = 0.0,
timestamp_granularities: Annotated[
list[Literal["segments"] | Literal["words"]],
Query(
alias="timestamp_granularities[]",
description="No-op. Ignored. Only for compatibility.",
),
] = ["segments", "words"],
) -> None:
assert (
model == config.whisper.model
), "Specifying a model that is different from the default is not supported yet."
await ws.accept()
transcribe_opts = {
"language": language,
"initial_prompt": prompt,
"temperature": temperature,
"vad_filter": True,
"condition_on_previous_text": False,
}
asr = FasterWhisperASR(whisper, **transcribe_opts)
audio_stream = AudioStream()
async with asyncio.TaskGroup() as tg:
tg.create_task(audio_receiver(ws, audio_stream))
async for transcription in audio_transcriber(asr, audio_stream):
logger.debug(f"Sending transcription: {transcription.text}")
if ws.client_state == WebSocketState.DISCONNECTED:
break
await ws.send_text(format_transcription(transcription, response_format))
if not ws.client_state == WebSocketState.DISCONNECTED:
logger.info("Closing the connection.")
await ws.close()
|