Spaces:
Running
Running
File size: 6,927 Bytes
c13b993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from huggingface_hub import HfApi
from datetime import datetime
import numpy as np
def format_number(num):
"""Format large numbers with K, M suffix"""
if num >= 1e6:
return f"{num/1e6:.1f}M"
elif num >= 1e3:
return f"{num/1e3:.1f}K"
return str(num)
def fetch_stats():
"""Fetch all DeepSeek model statistics"""
api = HfApi()
# Fetch original models
original_models = [
"deepseek-ai/deepseek-r1",
"deepseek-ai/deepseek-r1-zero",
"deepseek-ai/deepseek-r1-distill-llama-70b",
"deepseek-ai/deepseek-r1-distill-qwen-32b",
"deepseek-ai/deepseek-r1-distill-qwen-14b",
"deepseek-ai/deepseek-r1-distill-llama-8b",
"deepseek-ai/deepseek-r1-distill-qwen-7b",
"deepseek-ai/deepseek-r1-distill-qwen-1.5b"
]
original_stats = []
for model_id in original_models:
try:
info = api.model_info(model_id)
original_stats.append({
'model_id': model_id,
'downloads_30d': info.downloads if hasattr(info, 'downloads') else 0,
'likes': info.likes if hasattr(info, 'likes') else 0
})
except Exception as e:
print(f"Error fetching {model_id}: {str(e)}")
# Fetch derivative models - using the tag format that works
model_types = ["adapter", "finetune", "merge", "quantized"]
base_models = [
"DeepSeek-R1",
"DeepSeek-R1-Zero",
"DeepSeek-R1-Distill-Llama-70B",
"DeepSeek-R1-Distill-Qwen-32B",
"DeepSeek-R1-Distill-Qwen-14B",
"DeepSeek-R1-Distill-Llama-8B",
"DeepSeek-R1-Distill-Qwen-7B",
"DeepSeek-R1-Distill-Qwen-1.5B"
]
derivative_stats = []
for base_model in base_models:
for model_type in model_types:
try:
# Get models for this type
models = list(api.list_models(
filter=f"base_model:{model_type}:deepseek-ai/{base_model}",
full=True
))
# Add each model to our stats
for model in models:
derivative_stats.append({
'base_model': f"deepseek-ai/{base_model}",
'model_type': model_type,
'model_id': model.id,
'downloads_30d': model.downloads if hasattr(model, 'downloads') else 0,
'likes': model.likes if hasattr(model, 'likes') else 0
})
except Exception as e:
print(f"Error fetching {model_type} models for {base_model}: {str(e)}")
# Create DataFrames
original_df = pd.DataFrame(original_stats, columns=['model_id', 'downloads_30d', 'likes'])
derivative_df = pd.DataFrame(derivative_stats, columns=['base_model', 'model_type', 'model_id', 'downloads_30d', 'likes'])
return original_df, derivative_df
def create_stats_html():
"""Create HTML for displaying statistics"""
original_df, derivative_df = fetch_stats()
# Create summary statistics
total_originals = len(original_df)
total_derivatives = len(derivative_df)
total_downloads_orig = original_df['downloads_30d'].sum()
total_downloads_deriv = derivative_df['downloads_30d'].sum()
# Create derivative type distribution chart
if len(derivative_df) > 0:
# Create distribution by model type
type_dist = derivative_df.groupby('model_type').agg({
'model_id': 'count',
'downloads_30d': 'sum'
}).reset_index()
# Format model types to be more readable
type_dist['model_type'] = type_dist['model_type'].str.capitalize()
# Create bar chart with better formatting
fig_types = px.bar(
type_dist,
x='model_type',
y='downloads_30d',
title='Downloads by Model Type',
labels={
'downloads_30d': 'Downloads (last 30 days)',
'model_type': 'Model Type'
},
text=type_dist['downloads_30d'].apply(format_number) # Add value labels
)
# Update layout for better readability
fig_types.update_traces(textposition='outside')
fig_types.update_layout(
uniformtext_minsize=8,
uniformtext_mode='hide',
xaxis_tickangle=0,
yaxis_title="Downloads",
plot_bgcolor='white',
bargap=0.3
)
else:
# Create empty figure if no data
fig_types = px.bar(title='No data available')
# Create top models table
if len(derivative_df) > 0:
top_models = derivative_df.nlargest(10, 'downloads_30d')[
['model_id', 'model_type', 'downloads_30d', 'likes']
].copy() # Create a copy to avoid SettingWithCopyWarning
# Capitalize model types in the table
top_models['model_type'] = top_models['model_type'].str.capitalize()
# Format download numbers
top_models['downloads_30d'] = top_models['downloads_30d'].apply(format_number)
else:
top_models = pd.DataFrame(columns=['model_id', 'model_type', 'downloads_30d', 'likes'])
# Format the summary statistics
summary_html = f"""
<div style='padding: 20px; background-color: #f5f5f5; border-radius: 10px; margin-bottom: 20px;'>
<h3>Summary Statistics</h3>
<p>Derivative Models Downloads: {format_number(total_downloads_deriv)} ({total_derivatives} models)</p>
<p>Original Models Downloads: {format_number(total_downloads_orig)} ({total_originals} models)</p>
<p>Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M UTC')}</p>
</div>
"""
return summary_html, fig_types, top_models
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.HTML("<h1 style='text-align: center;'>DeepSeek Models Stats</h1>")
with gr.Row():
with gr.Column():
summary_html = gr.HTML()
with gr.Column():
plot = gr.Plot()
with gr.Row():
table = gr.DataFrame(
headers=["Model ID", "Type", "Downloads (30d)", "Likes"],
label="Top 10 Most Downloaded Models"
)
def update_stats():
summary, fig, top_models = create_stats_html()
return summary, fig, top_models
interface.load(update_stats,
outputs=[summary_html, plot, table])
return interface
# Create and launch the interface
demo = create_interface()
demo.launch() |