import os import pandas as pd import streamlit as st import torch from PIL import Image from ultralytics import YOLO class YOLODetect(): def __init__(self, modelo): self.modelo = modelo def predecir(self, source, imgsz=1280, conf=0.7, iou=0.50): # conf float 0.25 umbral de confianza del objeto para la detección # iou float 0.7 umbral de intersección sobre unión (IoU) para NMS self.results = self.modelo.predict(source=source, save=True, imgsz=imgsz, conf=conf, iou=iou) return self.results def render(self): result = self.results[0] file_name = os.path.join(result.save_dir, result.path) render = Image.open(file_name) return render path_best_model = 'yolov8n.pt' modelo_yolo = YOLO(path_best_model) def detect_objects(size, iou, conf, im): '''Wrapper fn for gradio''' g = (int(size) / max(im.size)) # gain im = im.resize(tuple([int(x * g) for x in im.size]), Image.LANCZOS) # resize with antialiasing model = YOLODetect(modelo_yolo) results = model.predecir(source=im, imgsz=int(size), conf=conf, iou=iou) objects_detected = results[0].boxes.cls.tolist() # Clases detectadas. objects_conf = results[0].boxes.conf.tolist() # Probabilidad de detección por clase detectada. objects_nested_list = pd.DataFrame({'Clase': objects_detected, 'Probabilidad': objects_conf}) result_img = model.render() return result_img, objects_nested_list def save_feedback(size, iou, conf, object_count_detected, objects_list, user_text, feedback_text, check_status): try: # Aquí puede ir el código para almacenar los datos en una base de datos. st.success("Se guardó el feeback exitosamente.") except Exception as err: print(err) st.warning("Error al guardar el feedback.") # Streamlit app layout st.title('YOLOv8 Detección de objetos') # Input col1, col2 = st.columns(2) with col1: iou_threshold = st.slider("NMS IoU Threshold (0.0 - 1.0)", 0.0, 1.0, 0.8, key="iou") conf_threshold = st.slider("Umbral o threshold (0.0 - 1.0)", 0.0, 1.0, 0.9, key="conf") with col2: size = st.selectbox("Tamaño de la imagen", options=["640", "1280"], key="size") uploaded_image = st.file_uploader("Cargar imagen", type=["jpg", "jpeg", "png"], key="image") # Process uploaded image if uploaded_image is not None: image = Image.open(uploaded_image) result_image, objects_nested_list = detect_objects(size=int(size), iou=iou_threshold, conf=conf_threshold, im=image) object_count = len(objects_nested_list) if result_image is not None: col1, col2 = st.columns(2) with col1: st.image(image, caption="Imagen original", use_column_width=True) with col2: st.image(result_image, caption="Resultado", use_column_width=True) with st.form("my_form", clear_on_submit=True): st.title("Formulario para feedback") st.write(f'Cantidad detectados: {object_count}') st.table(objects_nested_list) check_status = st.checkbox("¿El resultado contiene la cantidad correcta de figuras detectadas?", value=False) user_text = st.text_input("Ingrese el nombre del usuario que realizó la prueba (máximo 50 caracteres)", max_chars=50) feedback_text = st.text_input("Ingrese su feedback (máximo 100 caracteres)", max_chars=100) # save_button = st.button("Guardar feedback") save_button = st.form_submit_button('Guardar feedback') if save_button: save_feedback(size=int(size), iou=iou_threshold, conf=conf_threshold, object_count_detected=object_count, objects_list=objects_nested_list, user_text=user_text, feedback_text=feedback_text, check_status=check_status) else: st.warning("Error procesando la imagen. Volver a probar.")