Spaces:
Running
on
Zero
Running
on
Zero
Enhanced YOLOv11 SAHI Demo with Dynamic Model Loading, UI Controls and MCP Compatibility (#5)
Browse files- Enhanced YOLOv11 SAHI Demo with Dynamic Model Loading, UI Controls and MCP Compatibility (ce331e8383d49b9480287420f1341dc69a57f1dd)
Co-authored-by: Atalay Denknalbant <[email protected]>
app.py
CHANGED
|
@@ -6,10 +6,9 @@ import sahi.slicing
|
|
| 6 |
from PIL import Image
|
| 7 |
import numpy
|
| 8 |
from ultralytics import YOLO
|
| 9 |
-
|
| 10 |
-
|
| 11 |
import sys
|
| 12 |
import types
|
|
|
|
| 13 |
if 'huggingface_hub.utils._errors' not in sys.modules:
|
| 14 |
mock_errors = types.ModuleType('_errors')
|
| 15 |
mock_errors.RepositoryNotFoundError = Exception
|
|
@@ -37,15 +36,33 @@ sahi.utils.file.download_from_url(
|
|
| 37 |
"highway3.jpg",
|
| 38 |
)
|
| 39 |
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
def sahi_yolo_inference(
|
| 48 |
image,
|
|
|
|
|
|
|
|
|
|
| 49 |
slice_height=512,
|
| 50 |
slice_width=512,
|
| 51 |
overlap_height_ratio=0.2,
|
|
@@ -55,6 +72,29 @@ def sahi_yolo_inference(
|
|
| 55 |
postprocess_match_threshold=0.5,
|
| 56 |
postprocess_class_agnostic=False,
|
| 57 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
image_width, image_height = image.size
|
| 60 |
sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
|
@@ -71,18 +111,24 @@ def sahi_yolo_inference(
|
|
| 71 |
f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
|
| 72 |
)
|
| 73 |
|
| 74 |
-
#
|
| 75 |
prediction_result_1 = sahi.predict.get_prediction(
|
| 76 |
-
image=image, detection_model=model
|
| 77 |
)
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
|
| 80 |
image=numpy.array(image),
|
| 81 |
object_prediction_list=prediction_result_1.object_prediction_list,
|
| 82 |
)
|
| 83 |
output_1 = Image.fromarray(visual_result_1["image"])
|
| 84 |
|
| 85 |
-
#
|
| 86 |
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
| 87 |
image=image,
|
| 88 |
detection_model=model,
|
|
@@ -95,6 +141,13 @@ def sahi_yolo_inference(
|
|
| 95 |
postprocess_match_threshold=postprocess_match_threshold,
|
| 96 |
postprocess_class_agnostic=postprocess_class_agnostic,
|
| 97 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
|
| 99 |
image=numpy.array(image),
|
| 100 |
object_prediction_list=prediction_result_2.object_prediction_list,
|
|
@@ -105,48 +158,118 @@ def sahi_yolo_inference(
|
|
| 105 |
return output_1, output_2
|
| 106 |
|
| 107 |
|
| 108 |
-
|
| 109 |
-
gr.
|
| 110 |
-
gr.
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import numpy
|
| 8 |
from ultralytics import YOLO
|
|
|
|
|
|
|
| 9 |
import sys
|
| 10 |
import types
|
| 11 |
+
|
| 12 |
if 'huggingface_hub.utils._errors' not in sys.modules:
|
| 13 |
mock_errors = types.ModuleType('_errors')
|
| 14 |
mock_errors.RepositoryNotFoundError = Exception
|
|
|
|
| 36 |
"highway3.jpg",
|
| 37 |
)
|
| 38 |
|
| 39 |
+
# Global model variable
|
| 40 |
+
model = None
|
| 41 |
|
| 42 |
+
def load_yolo_model(model_name, confidence_threshold=0.5):
|
| 43 |
+
"""
|
| 44 |
+
Loads a YOLOv11 detection model.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
model_name (str): The name of the YOLOv11 model to load (e.g., "yolo11n.pt").
|
| 48 |
+
confidence_threshold (float): The confidence threshold for object detection.
|
| 49 |
|
| 50 |
+
Returns:
|
| 51 |
+
AutoDetectionModel: The loaded SAHI AutoDetectionModel.
|
| 52 |
+
"""
|
| 53 |
+
global model
|
| 54 |
+
model_path = model_name
|
| 55 |
+
model = AutoDetectionModel.from_pretrained(
|
| 56 |
+
model_type="ultralytics", model_path=model_path, device="cpu",
|
| 57 |
+
confidence_threshold=confidence_threshold, image_size=IMAGE_SIZE
|
| 58 |
+
)
|
| 59 |
+
return model
|
| 60 |
|
| 61 |
def sahi_yolo_inference(
|
| 62 |
image,
|
| 63 |
+
yolo_model_name,
|
| 64 |
+
confidence_threshold,
|
| 65 |
+
max_detections,
|
| 66 |
slice_height=512,
|
| 67 |
slice_width=512,
|
| 68 |
overlap_height_ratio=0.2,
|
|
|
|
| 72 |
postprocess_match_threshold=0.5,
|
| 73 |
postprocess_class_agnostic=False,
|
| 74 |
):
|
| 75 |
+
"""
|
| 76 |
+
Performs object detection using SAHI with a specified YOLOv11 model.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
image (PIL.Image.Image): The input image for detection.
|
| 80 |
+
yolo_model_name (str): The name of the YOLOv11 model to use for inference.
|
| 81 |
+
confidence_threshold (float): The confidence threshold for object detection.
|
| 82 |
+
max_detections (int): The maximum number of detections to return.
|
| 83 |
+
slice_height (int): The height of each slice for sliced inference.
|
| 84 |
+
slice_width (int): The width of each slice for sliced inference.
|
| 85 |
+
overlap_height_ratio (float): The overlap ratio for slice height.
|
| 86 |
+
overlap_width_ratio (float): The overlap ratio for slice width.
|
| 87 |
+
postprocess_type (str): The type of postprocessing to apply ("NMS" or "GREEDYNMM").
|
| 88 |
+
postprocess_match_metric (str): The metric for postprocessing matching ("IOU" or "IOS").
|
| 89 |
+
postprocess_match_threshold (float): The threshold for postprocessing matching.
|
| 90 |
+
postprocess_class_agnostic (bool): Whether postprocessing should be class agnostic.
|
| 91 |
+
|
| 92 |
+
Returns:
|
| 93 |
+
tuple: A tuple containing two PIL.Image.Image objects:
|
| 94 |
+
- The image with standard YOLO inference results.
|
| 95 |
+
- The image with SAHI sliced YOLO inference results.
|
| 96 |
+
"""
|
| 97 |
+
load_yolo_model(yolo_model_name, confidence_threshold)
|
| 98 |
|
| 99 |
image_width, image_height = image.size
|
| 100 |
sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
|
|
|
| 111 |
f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
|
| 112 |
)
|
| 113 |
|
| 114 |
+
# Standard inference
|
| 115 |
prediction_result_1 = sahi.predict.get_prediction(
|
| 116 |
+
image=image, detection_model=model,
|
| 117 |
)
|
| 118 |
+
|
| 119 |
+
# Filter by max_detections for standard inference
|
| 120 |
+
if max_detections is not None and len(prediction_result_1.object_prediction_list) > max_detections:
|
| 121 |
+
prediction_result_1.object_prediction_list = sorted(
|
| 122 |
+
prediction_result_1.object_prediction_list, key=lambda x: x.score.value, reverse=True
|
| 123 |
+
)[:max_detections]
|
| 124 |
+
|
| 125 |
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
|
| 126 |
image=numpy.array(image),
|
| 127 |
object_prediction_list=prediction_result_1.object_prediction_list,
|
| 128 |
)
|
| 129 |
output_1 = Image.fromarray(visual_result_1["image"])
|
| 130 |
|
| 131 |
+
# Sliced inference
|
| 132 |
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
| 133 |
image=image,
|
| 134 |
detection_model=model,
|
|
|
|
| 141 |
postprocess_match_threshold=postprocess_match_threshold,
|
| 142 |
postprocess_class_agnostic=postprocess_class_agnostic,
|
| 143 |
)
|
| 144 |
+
|
| 145 |
+
# Filter by max_detections for sliced inference
|
| 146 |
+
if max_detections is not None and len(prediction_result_2.object_prediction_list) > max_detections:
|
| 147 |
+
prediction_result_2.object_prediction_list = sorted(
|
| 148 |
+
prediction_result_2.object_prediction_list, key=lambda x: x.score.value, reverse=True
|
| 149 |
+
)[:max_detections]
|
| 150 |
+
|
| 151 |
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
|
| 152 |
image=numpy.array(image),
|
| 153 |
object_prediction_list=prediction_result_2.object_prediction_list,
|
|
|
|
| 158 |
return output_1, output_2
|
| 159 |
|
| 160 |
|
| 161 |
+
with gr.Blocks() as app:
|
| 162 |
+
gr.Markdown("# Small Object Detection with SAHI + YOLOv11")
|
| 163 |
+
gr.Markdown(
|
| 164 |
+
"SAHI + YOLOv11 demo for small object detection. "
|
| 165 |
+
"Upload your own image or click an example image to use."
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
with gr.Row():
|
| 169 |
+
with gr.Column():
|
| 170 |
+
original_image_input = gr.Image(type="pil", label="Original Image")
|
| 171 |
+
yolo_model_dropdown = gr.Dropdown(
|
| 172 |
+
choices=["yolo11n.pt", "yolo11s.pt", "yolo11m.pt", "yolo11l.pt", "yolo11x.pt"],
|
| 173 |
+
value="yolo11s.pt",
|
| 174 |
+
label="YOLOv11 Model",
|
| 175 |
+
)
|
| 176 |
+
confidence_threshold_slider = gr.Slider(
|
| 177 |
+
minimum=0.0,
|
| 178 |
+
maximum=1.0,
|
| 179 |
+
step=0.01,
|
| 180 |
+
value=0.5,
|
| 181 |
+
label="Confidence Threshold",
|
| 182 |
+
)
|
| 183 |
+
max_detections_slider = gr.Slider(
|
| 184 |
+
minimum=1,
|
| 185 |
+
maximum=500,
|
| 186 |
+
step=1,
|
| 187 |
+
value=300,
|
| 188 |
+
label="Max Detections",
|
| 189 |
+
)
|
| 190 |
+
slice_height_input = gr.Number(value=512, label="Slice Height")
|
| 191 |
+
slice_width_input = gr.Number(value=512, label="Slice Width")
|
| 192 |
+
overlap_height_ratio_slider = gr.Slider(
|
| 193 |
+
minimum=0.0,
|
| 194 |
+
maximum=1.0,
|
| 195 |
+
step=0.01,
|
| 196 |
+
value=0.2,
|
| 197 |
+
label="Overlap Height Ratio",
|
| 198 |
+
)
|
| 199 |
+
overlap_width_ratio_slider = gr.Slider(
|
| 200 |
+
minimum=0.0,
|
| 201 |
+
maximum=1.0,
|
| 202 |
+
step=0.01,
|
| 203 |
+
value=0.2,
|
| 204 |
+
label="Overlap Width Ratio",
|
| 205 |
+
)
|
| 206 |
+
postprocess_type_dropdown = gr.Dropdown(
|
| 207 |
+
["NMS", "GREEDYNMM"],
|
| 208 |
+
type="value",
|
| 209 |
+
value="NMS",
|
| 210 |
+
label="Postprocess Type",
|
| 211 |
+
)
|
| 212 |
+
postprocess_match_metric_dropdown = gr.Dropdown(
|
| 213 |
+
["IOU", "IOS"], type="value", value="IOU", label="Postprocess Match Metric"
|
| 214 |
+
)
|
| 215 |
+
postprocess_match_threshold_slider = gr.Slider(
|
| 216 |
+
minimum=0.0,
|
| 217 |
+
maximum=1.0,
|
| 218 |
+
step=0.01,
|
| 219 |
+
value=0.5,
|
| 220 |
+
label="Postprocess Match Threshold",
|
| 221 |
+
)
|
| 222 |
+
postprocess_class_agnostic_checkbox = gr.Checkbox(value=True, label="Postprocess Class Agnostic")
|
| 223 |
+
|
| 224 |
+
submit_button = gr.Button("Run Inference")
|
| 225 |
+
|
| 226 |
+
with gr.Column():
|
| 227 |
+
output_standard = gr.Image(type="pil", label="YOLOv11 Standard")
|
| 228 |
+
output_sahi_sliced = gr.Image(type="pil", label="YOLOv11 + SAHI Sliced")
|
| 229 |
+
|
| 230 |
+
gr.Examples(
|
| 231 |
+
examples=[
|
| 232 |
+
["apple_tree.jpg", "yolo11s.pt", 0.5, 300, 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True],
|
| 233 |
+
["highway.jpg", "yolo11s.pt", 0.5, 300, 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True],
|
| 234 |
+
["highway2.jpg", "yolo11s.pt", 0.5, 300, 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True],
|
| 235 |
+
["highway3.jpg", "yolo11s.pt", 0.5, 300, 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True],
|
| 236 |
+
],
|
| 237 |
+
inputs=[
|
| 238 |
+
original_image_input,
|
| 239 |
+
yolo_model_dropdown,
|
| 240 |
+
confidence_threshold_slider,
|
| 241 |
+
max_detections_slider,
|
| 242 |
+
slice_height_input,
|
| 243 |
+
slice_width_input,
|
| 244 |
+
overlap_height_ratio_slider,
|
| 245 |
+
overlap_width_ratio_slider,
|
| 246 |
+
postprocess_type_dropdown,
|
| 247 |
+
postprocess_match_metric_dropdown,
|
| 248 |
+
postprocess_match_threshold_slider,
|
| 249 |
+
postprocess_class_agnostic_checkbox,
|
| 250 |
+
],
|
| 251 |
+
outputs=[output_standard, output_sahi_sliced],
|
| 252 |
+
fn=sahi_yolo_inference,
|
| 253 |
+
cache_examples=True,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
submit_button.click(
|
| 257 |
+
fn=sahi_yolo_inference,
|
| 258 |
+
inputs=[
|
| 259 |
+
original_image_input,
|
| 260 |
+
yolo_model_dropdown,
|
| 261 |
+
confidence_threshold_slider,
|
| 262 |
+
max_detections_slider,
|
| 263 |
+
slice_height_input,
|
| 264 |
+
slice_width_input,
|
| 265 |
+
overlap_height_ratio_slider,
|
| 266 |
+
overlap_width_ratio_slider,
|
| 267 |
+
postprocess_type_dropdown,
|
| 268 |
+
postprocess_match_metric_dropdown,
|
| 269 |
+
postprocess_match_threshold_slider,
|
| 270 |
+
postprocess_class_agnostic_checkbox,
|
| 271 |
+
],
|
| 272 |
+
outputs=[output_standard, output_sahi_sliced],
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
app.launch(mcp_server=True)
|