Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer, pipeline
|
| 3 |
+
|
| 4 |
+
# Load the model and tokenizer
|
| 5 |
+
model = PegasusForConditionalGeneration.from_pretrained("fatihfauzan26/PEGASUS_liputan6")
|
| 6 |
+
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-cnn_dailymail")
|
| 7 |
+
|
| 8 |
+
# Initialize the summarization pipeline
|
| 9 |
+
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
|
| 10 |
+
|
| 11 |
+
# Streamlit interface
|
| 12 |
+
st.title("Summarization App using PEGASUS")
|
| 13 |
+
|
| 14 |
+
# Input article for summarization
|
| 15 |
+
sample_article = st.text_area('Enter the article you want to summarize', height=300)
|
| 16 |
+
|
| 17 |
+
if sample_article:
|
| 18 |
+
# Generate summary
|
| 19 |
+
input_ids = tokenizer.encode(sample_article, return_tensors='pt')
|
| 20 |
+
summary_ids = model.generate(input_ids,
|
| 21 |
+
min_length=30,
|
| 22 |
+
max_length=128,
|
| 23 |
+
num_beams=8,
|
| 24 |
+
repetition_penalty=2.0,
|
| 25 |
+
length_penalty=0.8,
|
| 26 |
+
early_stopping=True,
|
| 27 |
+
no_repeat_ngram_size=2,
|
| 28 |
+
use_cache=True,
|
| 29 |
+
do_sample=True,
|
| 30 |
+
temperature=1.2,
|
| 31 |
+
top_k=50,
|
| 32 |
+
top_p=0.95)
|
| 33 |
+
|
| 34 |
+
# Decode the summary
|
| 35 |
+
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 36 |
+
|
| 37 |
+
# Display results
|
| 38 |
+
st.subheader("Summary")
|
| 39 |
+
st.write(summary_text)
|