fatihfauzan26 commited on
Commit
7bd9b65
·
verified ·
1 Parent(s): 21e2dd6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import PegasusForConditionalGeneration, PegasusTokenizer, pipeline
3
+
4
+ # Load the model and tokenizer
5
+ model = PegasusForConditionalGeneration.from_pretrained("fatihfauzan26/PEGASUS_liputan6")
6
+ tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-cnn_dailymail")
7
+
8
+ # Initialize the summarization pipeline
9
+ summarizer = pipeline("summarization", model=model, tokenizer=tokenizer)
10
+
11
+ # Streamlit interface
12
+ st.title("Summarization App using PEGASUS")
13
+
14
+ # Input article for summarization
15
+ sample_article = st.text_area('Enter the article you want to summarize', height=300)
16
+
17
+ if sample_article:
18
+ # Generate summary
19
+ input_ids = tokenizer.encode(sample_article, return_tensors='pt')
20
+ summary_ids = model.generate(input_ids,
21
+ min_length=30,
22
+ max_length=128,
23
+ num_beams=8,
24
+ repetition_penalty=2.0,
25
+ length_penalty=0.8,
26
+ early_stopping=True,
27
+ no_repeat_ngram_size=2,
28
+ use_cache=True,
29
+ do_sample=True,
30
+ temperature=1.2,
31
+ top_k=50,
32
+ top_p=0.95)
33
+
34
+ # Decode the summary
35
+ summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
36
+
37
+ # Display results
38
+ st.subheader("Summary")
39
+ st.write(summary_text)