Spaces:
Running
Running
File size: 3,855 Bytes
b916b6e ea7851d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# /// script
# dependencies = [
# "fastrtc[vad, stt]==0.0.26.rc1",
# "openai",
# ]
# ///
import gradio as gr
import huggingface_hub
from fastrtc import (
AdditionalOutputs,
ReplyOnPause,
WebRTC,
WebRTCData,
WebRTCError,
get_hf_turn_credentials,
get_stt_model,
)
from gradio.utils import get_space
from openai import OpenAI
stt_model = get_stt_model()
conversations = {}
def response(
data: WebRTCData,
conversation: list[dict],
token: str | None = None,
model: str = "meta-llama/Llama-3.2-3B-Instruct",
provider: str = "sambanova",
):
print("conversation before", conversation)
if not provider.startswith("http") and not token:
raise WebRTCError("Please add your HF token.")
if data.audio is not None and data.audio[1].size > 0:
user_audio_text = stt_model.stt(data.audio)
conversation.append({"role": "user", "content": user_audio_text})
else:
conversation.append({"role": "user", "content": data.textbox})
yield AdditionalOutputs(conversation)
if provider.startswith("http"):
client = OpenAI(base_url=provider, api_key="ollama")
else:
client = huggingface_hub.InferenceClient(
api_key=token,
provider=provider, # type: ignore
)
request = client.chat.completions.create(
model=model,
messages=conversation, # type: ignore
temperature=1,
top_p=0.1,
)
response = {"role": "assistant", "content": request.choices[0].message.content}
conversation.append(response)
print("conversation after", conversation)
yield AdditionalOutputs(conversation)
css = """
footer {
display: none !important;
}
"""
providers = [
"black-forest-labs",
"cerebras",
"cohere",
"fal-ai",
"fireworks-ai",
"hf-inference",
"hyperbolic",
"nebius",
"novita",
"openai",
"replicate",
"sambanova",
"together",
]
def hide_token(provider: str):
if provider.startswith("http"):
return gr.Textbox(visible=False)
return gr.skip()
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<h1 style='text-align: center; display: flex; align-items: center; justify-content: center;'>
<img src="https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/AV_Huggy.png" alt="Streaming Huggy" style="height: 50px; margin-right: 10px"> FastRTC Chat
</h1>
"""
)
with gr.Sidebar():
token = gr.Textbox(
placeholder="Place your HF token here", type="password", label="HF Token"
)
model = gr.Dropdown(
choices=["meta-llama/Llama-3.2-3B-Instruct"],
allow_custom_value=True,
label="Model",
)
provider = gr.Dropdown(
label="Provider",
choices=providers,
value="sambanova",
info="Select a hf-compatible provider or type the url of your server, e.g. http://127.0.0.1:11434/v1 for ollama",
allow_custom_value=True,
)
provider.change(hide_token, inputs=[provider], outputs=[token])
cb = gr.Chatbot(type="messages", height=600)
webrtc = WebRTC(
modality="audio",
mode="send",
variant="textbox",
rtc_configuration=get_hf_turn_credentials if get_space() else None,
server_rtc_configuration=get_hf_turn_credentials(ttl=3_600 * 24 * 30)
if get_space()
else None,
)
webrtc.stream(
ReplyOnPause(response), # type: ignore
inputs=[webrtc, cb, token, model, provider],
outputs=[cb],
concurrency_limit=100,
)
webrtc.on_additional_outputs(
lambda old, new: new, inputs=[cb], outputs=[cb], concurrency_limit=100
)
if __name__ == "__main__":
demo.launch(server_port=7860)
|