File size: 3,855 Bytes
b916b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7851d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# /// script
# dependencies = [
#   "fastrtc[vad, stt]==0.0.26.rc1",
#   "openai",
# ]
# ///


import gradio as gr
import huggingface_hub
from fastrtc import (
    AdditionalOutputs,
    ReplyOnPause,
    WebRTC,
    WebRTCData,
    WebRTCError,
    get_hf_turn_credentials,
    get_stt_model,
)
from gradio.utils import get_space
from openai import OpenAI

stt_model = get_stt_model()

conversations = {}


def response(
    data: WebRTCData,
    conversation: list[dict],
    token: str | None = None,
    model: str = "meta-llama/Llama-3.2-3B-Instruct",
    provider: str = "sambanova",
):
    print("conversation before", conversation)
    if not provider.startswith("http") and not token:
        raise WebRTCError("Please add your HF token.")

    if data.audio is not None and data.audio[1].size > 0:
        user_audio_text = stt_model.stt(data.audio)
        conversation.append({"role": "user", "content": user_audio_text})
    else:
        conversation.append({"role": "user", "content": data.textbox})

    yield AdditionalOutputs(conversation)

    if provider.startswith("http"):
        client = OpenAI(base_url=provider, api_key="ollama")
    else:
        client = huggingface_hub.InferenceClient(
            api_key=token,
            provider=provider,  # type: ignore
        )

    request = client.chat.completions.create(
        model=model,
        messages=conversation,  # type: ignore
        temperature=1,
        top_p=0.1,
    )
    response = {"role": "assistant", "content": request.choices[0].message.content}

    conversation.append(response)
    print("conversation after", conversation)
    yield AdditionalOutputs(conversation)


css = """
footer {
    display: none !important;
}
"""

providers = [
    "black-forest-labs",
    "cerebras",
    "cohere",
    "fal-ai",
    "fireworks-ai",
    "hf-inference",
    "hyperbolic",
    "nebius",
    "novita",
    "openai",
    "replicate",
    "sambanova",
    "together",
]


def hide_token(provider: str):
    if provider.startswith("http"):
        return gr.Textbox(visible=False)
    return gr.skip()


with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
            <h1 style='text-align: center; display: flex; align-items: center; justify-content: center;'>
            <img src="https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/AV_Huggy.png" alt="Streaming Huggy" style="height: 50px; margin-right: 10px"> FastRTC Chat
            </h1>
        """
    )
    with gr.Sidebar():
        token = gr.Textbox(
            placeholder="Place your HF token here", type="password", label="HF Token"
        )
        model = gr.Dropdown(
            choices=["meta-llama/Llama-3.2-3B-Instruct"],
            allow_custom_value=True,
            label="Model",
        )
        provider = gr.Dropdown(
            label="Provider",
            choices=providers,
            value="sambanova",
            info="Select a hf-compatible provider or type the url of your server, e.g. http://127.0.0.1:11434/v1 for ollama",
            allow_custom_value=True,
        )
    provider.change(hide_token, inputs=[provider], outputs=[token])
    cb = gr.Chatbot(type="messages", height=600)
    webrtc = WebRTC(
        modality="audio",
        mode="send",
        variant="textbox",
        rtc_configuration=get_hf_turn_credentials if get_space() else None,
        server_rtc_configuration=get_hf_turn_credentials(ttl=3_600 * 24 * 30)
        if get_space()
        else None,
    )
    webrtc.stream(
        ReplyOnPause(response),  # type: ignore
        inputs=[webrtc, cb, token, model, provider],
        outputs=[cb],
        concurrency_limit=100,
    )
    webrtc.on_additional_outputs(
        lambda old, new: new, inputs=[cb], outputs=[cb], concurrency_limit=100
    )

if __name__ == "__main__":
    demo.launch(server_port=7860)