from model import DesignModel
from PIL import Image
import numpy as np
from typing import List
import random
import time
import torch
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
import logging
import os
from datetime import datetime
import gc

# Set up logging
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"prod_model_{datetime.now().strftime('%Y%m%d')}.log")

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler(log_file),
        logging.StreamHandler()
    ]
)

class ProductionDesignModel(DesignModel):
    def __init__(self):
        """Initialize the production model with advanced architecture"""
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.dtype = torch.float16 if self.device == "cuda" else torch.float32
        
        # Setup logging
        logging.basicConfig(filename=f'logs/prod_model_{time.strftime("%Y%m%d")}.log',
                          level=logging.INFO,
                          format='%(asctime)s - %(levelname)s - %(message)s')
        
        self.seed = 323*111
        self.neg_prompt = "window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner"
        self.control_items = ["windowpane;window", "door;double;door"]
        self.additional_quality_suffix = "interior design, 4K, high resolution, photorealistic"
        
        try:
            logging.info(f"Initializing models on {self.device} with {self.dtype}")
            self._initialize_models()
            logging.info("Models initialized successfully")
        except Exception as e:
            logging.error(f"Error initializing models: {e}")
            raise

    def _initialize_models(self):
        """Initialize all required models and pipelines"""
        # Initialize ControlNet models
        self.controlnet_depth = ControlNetModel.from_pretrained(
            "controlnet_depth", torch_dtype=self.dtype, use_safetensors=True
        )
        self.controlnet_seg = ControlNetModel.from_pretrained(
            "own_controlnet", torch_dtype=self.dtype, use_safetensors=True
        )

        # Initialize main pipeline
        self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
            "SG161222/Realistic_Vision_V5.1_noVAE",
            controlnet=[self.controlnet_depth, self.controlnet_seg],
            safety_checker=None,
            torch_dtype=self.dtype
        )

        # Setup IP-Adapter
        self.pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
                                weight_name="ip-adapter_sd15.bin")
        self.pipe.set_ip_adapter_scale(0.4)
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe = self.pipe.to(self.device)

        # Initialize guide pipeline
        self.guide_pipe = AutoPipelineForText2Image.from_pretrained(
            "segmind/SSD-1B",
            torch_dtype=self.dtype,
            use_safetensors=True,
            variant="fp16"
        ).to(self.device)

        # Initialize segmentation and depth models
        self.seg_processor, self.seg_model = self._init_segmentation()
        self.depth_processor, self.depth_model = self._init_depth()
        self.depth_model = self.depth_model.to(self.device)

    def _init_segmentation(self):
        """Initialize segmentation models"""
        processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
        model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
        return processor, model

    def _init_depth(self):
        """Initialize depth estimation models"""
        processor = AutoImageProcessor.from_pretrained(
            "LiheYoung/depth-anything-large-hf",
            torch_dtype=self.dtype
        )
        model = AutoModelForDepthEstimation.from_pretrained(
            "LiheYoung/depth-anything-large-hf",
            torch_dtype=self.dtype
        )
        return processor, model

    def _get_depth_map(self, image: Image.Image) -> Image.Image:
        """Generate depth map for input image"""
        image_to_depth = self.depth_processor(images=image, return_tensors="pt").to(self.device)
        with torch.inference_mode():
            depth_map = self.depth_model(**image_to_depth).predicted_depth

        width, height = image.size
        depth_map = torch.nn.functional.interpolate(
            depth_map.unsqueeze(1).float(),
            size=(height, width),
            mode="bicubic",
            align_corners=False,
        )
        depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
        depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
        depth_map = (depth_map - depth_min) / (depth_max - depth_min)
        image = torch.cat([depth_map] * 3, dim=1)

        image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
        return Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))

    def _segment_image(self, image: Image.Image) -> Image.Image:
        """Generate segmentation map for input image"""
        pixel_values = self.seg_processor(image, return_tensors="pt").pixel_values
        with torch.inference_mode():
            outputs = self.seg_model(pixel_values)

        seg = self.seg_processor.post_process_semantic_segmentation(
            outputs, target_sizes=[image.size[::-1]])[0]
        color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
        
        # You'll need to implement the palette mapping here
        # This is a placeholder - you should implement proper color mapping
        for label in range(seg.max() + 1):
            color_seg[seg == label, :] = [label * 30 % 255] * 3
            
        return Image.fromarray(color_seg).convert('RGB')

    def _resize_image(self, image: Image.Image, target_size: int) -> Image.Image:
        """Resize image while maintaining aspect ratio"""
        width, height = image.size
        if width > height:
            new_width = target_size
            new_height = int(height * (target_size / width))
        else:
            new_height = target_size
            new_width = int(width * (target_size / height))
        return image.resize((new_width, new_height), Image.LANCZOS)

    def _flush(self):
        """Clear CUDA cache"""
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    def generate_design(self, image: Image.Image, prompt: str, **kwargs) -> List[Image.Image]:
        """
        Generate design variations based on input image and prompt
        """
        try:
            # Set seed
            seed_param = kwargs.get('seed')
            base_seed = int(time.time()) if seed_param is None else int(seed_param)
            self.generator = torch.Generator(device=self.device).manual_seed(base_seed)
            
            # Get parameters
            num_variations = kwargs.get('num_variations', 1)
            guidance_scale = float(kwargs.get('guidance_scale', 10.0))
            num_steps = int(kwargs.get('num_steps', 50))
            strength = float(kwargs.get('strength', 0.9))
            img_size = int(kwargs.get('img_size', 768))

            logging.info(f"Generating design with parameters: guidance_scale={guidance_scale}, "
                        f"num_steps={num_steps}, strength={strength}, img_size={img_size}")

            # Prepare prompt
            pos_prompt = f"{prompt}, {self.additional_quality_suffix}"

            # Process input image
            orig_size = image.size
            input_image = self._resize_image(image, img_size)
            
            # Generate depth map
            depth_map = self._get_depth_map(input_image)
            
            # Generate segmentation
            seg_map = self._segment_image(input_image)

            # Generate IP-adapter reference image
            self._flush()
            ip_image = self.guide_pipe(
                pos_prompt,
                num_inference_steps=num_steps,
                negative_prompt=self.neg_prompt,
                generator=self.generator
            ).images[0]

            # Generate variations
            variations = []
            for i in range(num_variations):
                try:
                    self._flush()
                    variation = self.pipe(
                        prompt=pos_prompt,
                        negative_prompt=self.neg_prompt,
                        num_inference_steps=num_steps,
                        strength=strength,
                        guidance_scale=guidance_scale,
                        generator=self.generator,
                        image=input_image,
                        ip_adapter_image=ip_image,
                        control_image=[depth_map, seg_map],
                        controlnet_conditioning_scale=[0.5, 0.5]
                    ).images[0]
                    
                    # Resize back to original size
                    variation = variation.resize(orig_size, Image.LANCZOS)
                    variations.append(variation)
                    
                except Exception as e:
                    logging.error(f"Error generating variation {i}: {e}")
                    continue

            if not variations:
                logging.warning("No variations were generated successfully")
                return [image]  # Return original image if no variations were generated

            return variations

        except Exception as e:
            logging.error(f"Error in generate_design: {e}")
            return [image]  # Return original image in case of error

    def __del__(self):
        """Cleanup when the model is deleted"""
        self._flush()