File size: 10,118 Bytes
4e4b650
 
 
 
 
 
 
d81760a
 
 
4e4b650
 
 
d81760a
4e4b650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d81760a
 
 
 
 
 
 
 
 
 
 
 
 
 
4e4b650
d81760a
 
 
4e4b650
d81760a
4e4b650
 
d81760a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e4b650
d81760a
4e4b650
d81760a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d8e518
 
 
 
 
 
 
 
 
 
d81760a
4e4b650
5d8e518
 
 
 
 
 
 
 
 
 
 
 
 
9cd6532
d81760a
5d8e518
d81760a
5d8e518
d81760a
5d8e518
4e4b650
5d8e518
 
 
4e4b650
 
d81760a
4e4b650
5d8e518
 
 
 
 
 
 
 
4e4b650
d81760a
5d8e518
 
 
4e4b650
 
5d8e518
 
4e4b650
 
5d8e518
d81760a
5d8e518
 
 
 
 
 
d81760a
 
5d8e518
 
4e4b650
5d8e518
4e4b650
5d8e518
 
d81760a
4e4b650
 
d81760a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from model import DesignModel
from PIL import Image
import numpy as np
from typing import List
import random
import time
import torch
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
import logging
import os
from datetime import datetime
import gc

# Set up logging
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"prod_model_{datetime.now().strftime('%Y%m%d')}.log")

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler(log_file),
        logging.StreamHandler()
    ]
)

class ProductionDesignModel(DesignModel):
    def __init__(self):
        """Initialize the production model with advanced architecture"""
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.dtype = torch.float16 if self.device == "cuda" else torch.float32
        
        # Setup logging
        logging.basicConfig(filename=f'logs/prod_model_{time.strftime("%Y%m%d")}.log',
                          level=logging.INFO,
                          format='%(asctime)s - %(levelname)s - %(message)s')
        
        self.seed = 323*111
        self.neg_prompt = "window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner"
        self.control_items = ["windowpane;window", "door;double;door"]
        self.additional_quality_suffix = "interior design, 4K, high resolution, photorealistic"
        
        try:
            logging.info(f"Initializing models on {self.device} with {self.dtype}")
            self._initialize_models()
            logging.info("Models initialized successfully")
        except Exception as e:
            logging.error(f"Error initializing models: {e}")
            raise

    def _initialize_models(self):
        """Initialize all required models and pipelines"""
        # Initialize ControlNet models
        self.controlnet_depth = ControlNetModel.from_pretrained(
            "controlnet_depth", torch_dtype=self.dtype, use_safetensors=True
        )
        self.controlnet_seg = ControlNetModel.from_pretrained(
            "own_controlnet", torch_dtype=self.dtype, use_safetensors=True
        )

        # Initialize main pipeline
        self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
            "SG161222/Realistic_Vision_V5.1_noVAE",
            controlnet=[self.controlnet_depth, self.controlnet_seg],
            safety_checker=None,
            torch_dtype=self.dtype
        )

        # Setup IP-Adapter
        self.pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
                                weight_name="ip-adapter_sd15.bin")
        self.pipe.set_ip_adapter_scale(0.4)
        self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
        self.pipe = self.pipe.to(self.device)

        # Initialize guide pipeline
        self.guide_pipe = AutoPipelineForText2Image.from_pretrained(
            "segmind/SSD-1B",
            torch_dtype=self.dtype,
            use_safetensors=True,
            variant="fp16"
        ).to(self.device)

        # Initialize segmentation and depth models
        self.seg_processor, self.seg_model = self._init_segmentation()
        self.depth_processor, self.depth_model = self._init_depth()
        self.depth_model = self.depth_model.to(self.device)

    def _init_segmentation(self):
        """Initialize segmentation models"""
        processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
        model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
        return processor, model

    def _init_depth(self):
        """Initialize depth estimation models"""
        processor = AutoImageProcessor.from_pretrained(
            "LiheYoung/depth-anything-large-hf",
            torch_dtype=self.dtype
        )
        model = AutoModelForDepthEstimation.from_pretrained(
            "LiheYoung/depth-anything-large-hf",
            torch_dtype=self.dtype
        )
        return processor, model

    def _get_depth_map(self, image: Image.Image) -> Image.Image:
        """Generate depth map for input image"""
        image_to_depth = self.depth_processor(images=image, return_tensors="pt").to(self.device)
        with torch.inference_mode():
            depth_map = self.depth_model(**image_to_depth).predicted_depth

        width, height = image.size
        depth_map = torch.nn.functional.interpolate(
            depth_map.unsqueeze(1).float(),
            size=(height, width),
            mode="bicubic",
            align_corners=False,
        )
        depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
        depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
        depth_map = (depth_map - depth_min) / (depth_max - depth_min)
        image = torch.cat([depth_map] * 3, dim=1)

        image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
        return Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))

    def _segment_image(self, image: Image.Image) -> Image.Image:
        """Generate segmentation map for input image"""
        pixel_values = self.seg_processor(image, return_tensors="pt").pixel_values
        with torch.inference_mode():
            outputs = self.seg_model(pixel_values)

        seg = self.seg_processor.post_process_semantic_segmentation(
            outputs, target_sizes=[image.size[::-1]])[0]
        color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
        
        # You'll need to implement the palette mapping here
        # This is a placeholder - you should implement proper color mapping
        for label in range(seg.max() + 1):
            color_seg[seg == label, :] = [label * 30 % 255] * 3
            
        return Image.fromarray(color_seg).convert('RGB')

    def _resize_image(self, image: Image.Image, target_size: int) -> Image.Image:
        """Resize image while maintaining aspect ratio"""
        width, height = image.size
        if width > height:
            new_width = target_size
            new_height = int(height * (target_size / width))
        else:
            new_height = target_size
            new_width = int(width * (target_size / height))
        return image.resize((new_width, new_height), Image.LANCZOS)

    def _flush(self):
        """Clear CUDA cache"""
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    def generate_design(self, image, num_variations=1, **kwargs):
        """Generate design variations using the model.
        
        Args:
            image: Input image (PIL Image, numpy array, or torch tensor)
            num_variations: Number of variations to generate
            **kwargs: Additional parameters like prompt, num_steps, guidance_scale, strength
        
        Returns:
            List of generated images
        """
        try:
            # Convert image to PIL Image if needed
            if isinstance(image, np.ndarray):
                image = Image.fromarray(image)
            elif isinstance(image, torch.Tensor):
                # Convert tensor to numpy then PIL
                image = Image.fromarray((image.cpu().numpy() * 255).astype(np.uint8))
            
            if not isinstance(image, Image.Image):
                raise ValueError(f"Unsupported image type: {type(image)}")
            
            # Ensure image is RGB
            if image.mode != "RGB":
                image = image.convert("RGB")
            
            # Get parameters
            prompt = kwargs.get('prompt', '')
            num_steps = int(kwargs.get('num_steps', 50))
            guidance_scale = float(kwargs.get('guidance_scale', 10.0))
            strength = float(kwargs.get('strength', 0.9))
            seed_param = kwargs.get('seed')
            
            # Handle seed
            base_seed = int(time.time()) if seed_param is None else int(seed_param)
            logging.info(f"Using base seed: {base_seed}")
            
            variations = []
            for i in range(num_variations):
                try:
                    # Generate distinct seed for each variation
                    seed = base_seed + i
                    generator = torch.Generator(device=self.device).manual_seed(seed)
                    
                    # Generate variation
                    output = self.pipe(
                        prompt=prompt,
                        image=image,
                        num_inference_steps=num_steps,
                        guidance_scale=guidance_scale,
                        strength=strength,
                        generator=generator,
                        negative_prompt=self.neg_prompt
                    ).images[0]
                    
                    variations.append(output)
                    logging.info(f"Successfully generated variation {i} with seed {seed}")
                    
                except Exception as e:
                    logging.error(f"Error generating variation {i}: {str(e)}")
                    continue
                
                finally:
                    # Clear CUDA cache after each variation
                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()
            
            if not variations:
                logging.warning("No variations were generated successfully")
                return [image]  # Return original image if no variations generated
            
            return variations
            
        except Exception as e:
            logging.error(f"Error in generate_design: {str(e)}")
            return [image]  # Return original image on error

    def __del__(self):
        """Cleanup when the model is deleted"""
        self._flush()