Spaces:
Sleeping
Sleeping
File size: 10,118 Bytes
4e4b650 d81760a 4e4b650 d81760a 4e4b650 d81760a 4e4b650 d81760a 4e4b650 d81760a 4e4b650 d81760a 4e4b650 d81760a 4e4b650 d81760a 5d8e518 d81760a 4e4b650 5d8e518 9cd6532 d81760a 5d8e518 d81760a 5d8e518 d81760a 5d8e518 4e4b650 5d8e518 4e4b650 d81760a 4e4b650 5d8e518 4e4b650 d81760a 5d8e518 4e4b650 5d8e518 4e4b650 5d8e518 d81760a 5d8e518 d81760a 5d8e518 4e4b650 5d8e518 4e4b650 5d8e518 d81760a 4e4b650 d81760a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
from model import DesignModel
from PIL import Image
import numpy as np
from typing import List
import random
import time
import torch
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
import logging
import os
from datetime import datetime
import gc
# Set up logging
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"prod_model_{datetime.now().strftime('%Y%m%d')}.log")
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file),
logging.StreamHandler()
]
)
class ProductionDesignModel(DesignModel):
def __init__(self):
"""Initialize the production model with advanced architecture"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.dtype = torch.float16 if self.device == "cuda" else torch.float32
# Setup logging
logging.basicConfig(filename=f'logs/prod_model_{time.strftime("%Y%m%d")}.log',
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
self.seed = 323*111
self.neg_prompt = "window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner"
self.control_items = ["windowpane;window", "door;double;door"]
self.additional_quality_suffix = "interior design, 4K, high resolution, photorealistic"
try:
logging.info(f"Initializing models on {self.device} with {self.dtype}")
self._initialize_models()
logging.info("Models initialized successfully")
except Exception as e:
logging.error(f"Error initializing models: {e}")
raise
def _initialize_models(self):
"""Initialize all required models and pipelines"""
# Initialize ControlNet models
self.controlnet_depth = ControlNetModel.from_pretrained(
"controlnet_depth", torch_dtype=self.dtype, use_safetensors=True
)
self.controlnet_seg = ControlNetModel.from_pretrained(
"own_controlnet", torch_dtype=self.dtype, use_safetensors=True
)
# Initialize main pipeline
self.pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
controlnet=[self.controlnet_depth, self.controlnet_seg],
safety_checker=None,
torch_dtype=self.dtype
)
# Setup IP-Adapter
self.pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
weight_name="ip-adapter_sd15.bin")
self.pipe.set_ip_adapter_scale(0.4)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to(self.device)
# Initialize guide pipeline
self.guide_pipe = AutoPipelineForText2Image.from_pretrained(
"segmind/SSD-1B",
torch_dtype=self.dtype,
use_safetensors=True,
variant="fp16"
).to(self.device)
# Initialize segmentation and depth models
self.seg_processor, self.seg_model = self._init_segmentation()
self.depth_processor, self.depth_model = self._init_depth()
self.depth_model = self.depth_model.to(self.device)
def _init_segmentation(self):
"""Initialize segmentation models"""
processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
return processor, model
def _init_depth(self):
"""Initialize depth estimation models"""
processor = AutoImageProcessor.from_pretrained(
"LiheYoung/depth-anything-large-hf",
torch_dtype=self.dtype
)
model = AutoModelForDepthEstimation.from_pretrained(
"LiheYoung/depth-anything-large-hf",
torch_dtype=self.dtype
)
return processor, model
def _get_depth_map(self, image: Image.Image) -> Image.Image:
"""Generate depth map for input image"""
image_to_depth = self.depth_processor(images=image, return_tensors="pt").to(self.device)
with torch.inference_mode():
depth_map = self.depth_model(**image_to_depth).predicted_depth
width, height = image.size
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1).float(),
size=(height, width),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
return Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
def _segment_image(self, image: Image.Image) -> Image.Image:
"""Generate segmentation map for input image"""
pixel_values = self.seg_processor(image, return_tensors="pt").pixel_values
with torch.inference_mode():
outputs = self.seg_model(pixel_values)
seg = self.seg_processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]])[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
# You'll need to implement the palette mapping here
# This is a placeholder - you should implement proper color mapping
for label in range(seg.max() + 1):
color_seg[seg == label, :] = [label * 30 % 255] * 3
return Image.fromarray(color_seg).convert('RGB')
def _resize_image(self, image: Image.Image, target_size: int) -> Image.Image:
"""Resize image while maintaining aspect ratio"""
width, height = image.size
if width > height:
new_width = target_size
new_height = int(height * (target_size / width))
else:
new_height = target_size
new_width = int(width * (target_size / height))
return image.resize((new_width, new_height), Image.LANCZOS)
def _flush(self):
"""Clear CUDA cache"""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def generate_design(self, image, num_variations=1, **kwargs):
"""Generate design variations using the model.
Args:
image: Input image (PIL Image, numpy array, or torch tensor)
num_variations: Number of variations to generate
**kwargs: Additional parameters like prompt, num_steps, guidance_scale, strength
Returns:
List of generated images
"""
try:
# Convert image to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
elif isinstance(image, torch.Tensor):
# Convert tensor to numpy then PIL
image = Image.fromarray((image.cpu().numpy() * 255).astype(np.uint8))
if not isinstance(image, Image.Image):
raise ValueError(f"Unsupported image type: {type(image)}")
# Ensure image is RGB
if image.mode != "RGB":
image = image.convert("RGB")
# Get parameters
prompt = kwargs.get('prompt', '')
num_steps = int(kwargs.get('num_steps', 50))
guidance_scale = float(kwargs.get('guidance_scale', 10.0))
strength = float(kwargs.get('strength', 0.9))
seed_param = kwargs.get('seed')
# Handle seed
base_seed = int(time.time()) if seed_param is None else int(seed_param)
logging.info(f"Using base seed: {base_seed}")
variations = []
for i in range(num_variations):
try:
# Generate distinct seed for each variation
seed = base_seed + i
generator = torch.Generator(device=self.device).manual_seed(seed)
# Generate variation
output = self.pipe(
prompt=prompt,
image=image,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
strength=strength,
generator=generator,
negative_prompt=self.neg_prompt
).images[0]
variations.append(output)
logging.info(f"Successfully generated variation {i} with seed {seed}")
except Exception as e:
logging.error(f"Error generating variation {i}: {str(e)}")
continue
finally:
# Clear CUDA cache after each variation
if torch.cuda.is_available():
torch.cuda.empty_cache()
if not variations:
logging.warning("No variations were generated successfully")
return [image] # Return original image if no variations generated
return variations
except Exception as e:
logging.error(f"Error in generate_design: {str(e)}")
return [image] # Return original image on error
def __del__(self):
"""Cleanup when the model is deleted"""
self._flush() |