Spaces:
Running
Running
File size: 9,217 Bytes
db691a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import asyncio
import base64
import logging
import os
import time
import cv2
import gradio as gr
import httpx
import numpy as np
import requests
from gradio.themes.utils import sizes
# LOGGING
logger = logging.getLogger("LookSwap")
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
handler.setFormatter(formatter)
logger.addHandler(handler)
# IMAGE ASSETS
ASSETS_DIR = os.path.join(os.path.dirname(__file__), "assets")
WATERMARK = cv2.imread(os.path.join(ASSETS_DIR, "watermark.png"), cv2.IMREAD_UNCHANGED)
WATERMARK = cv2.resize(WATERMARK, (0, 0), fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA)
NSFW = os.path.join(ASSETS_DIR, "nsfw.webp")
# API CONFIG
FASHN_API_URL = os.environ.get("FASHN_ENPOINT_URL")
FASHN_API_KEY = os.environ.get("FASHN_API_KEY")
assert FASHN_API_URL, "Please set the FASHN_ENPOINT_URL environment variable"
assert FASHN_API_KEY, "Please set the FASHN_API_KEY environment variable"
# ----------------- HELPER FUNCTIONS ----------------- #
def add_watermark(image: np.array, watermark: np.array, offset: int = 5) -> np.array:
"""Adds a watermark to the image at the bottom right corner with a given offset."""
image_height, image_width = image.shape[:2]
watermark_height, watermark_width = watermark.shape[:2]
# Calculate the position of the watermark in the bottom right corner, with a slight offset
x_offset = image_width - watermark_width - offset
y_offset = image_height - watermark_height - offset
# Separate the watermark into its color and alpha channels
overlay_color = watermark[:, :, :3]
overlay_mask = watermark[:, :, 3]
# Blend the watermark with the image
for c in range(0, 3):
image[y_offset : y_offset + watermark_height, x_offset : x_offset + watermark_width, c] = overlay_color[
:, :, c
] * (overlay_mask / 255.0) + image[
y_offset : y_offset + watermark_height, x_offset : x_offset + watermark_width, c
] * (
1.0 - overlay_mask / 255.0
)
return image
def opencv_load_image_from_http(url: str) -> np.ndarray:
"""Loads an image from a given URL using HTTP GET."""
with requests.get(url) as response:
response.raise_for_status()
image_data = np.frombuffer(response.content, np.uint8)
image = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
return image
def resize_image(img: np.array, short_axis_target: int = 512) -> np.array:
"""Resizes an image to keep the aspect ratio with the shortest axis not exceeding a target size."""
height, width = img.shape[:2]
scale_factor = short_axis_target / min(height, width)
resized_img = cv2.resize(img, (0, 0), fx=scale_factor, fy=scale_factor, interpolation=cv2.INTER_AREA)
return resized_img
def encode_img_to_base64(img: np.array) -> str:
"""Encodes an image as a JPEG in Base64 format."""
img = cv2.imencode(".jpg", img)[1].tobytes()
img = base64.b64encode(img).decode("utf-8")
img = f"data:image/jpeg;base64,{img}"
return img
def parse_checkboxes(checkboxes):
checkboxes = [checkbox.lower().replace(" ", "_") for checkbox in checkboxes]
checkboxes = {checkbox: True for checkbox in checkboxes}
return checkboxes
def verify_aspect_ratio(img: np.array, prefix: str = "Model"):
height, width = img.shape[:2]
aspect_ratio = width / height
if aspect_ratio < 0.5:
raise gr.Error(f"{prefix} image W:H aspect ratio is too low. Use 2:3 or 3:4 for best results.")
elif aspect_ratio > 0.8:
raise gr.Error(f"{prefix} image W:H aspect ratio is too high. Use 2:3 or 3:4 for best results.")
# ----------------- CORE FUNCTION ----------------- #
CATEGORY_API_MAPPING = {"Top": "tops", "Bottom": "bottoms", "Full-body": "one-pieces"}
async def get_tryon_result(model_image, garment_image, category, model_checkboxes, request: gr.Request):
logger.info("Starting new try-on request...")
if request:
client_ip = request.headers.get("x-forwarded-for") or request.client.host
# verify aspect ratio of the input images
verify_aspect_ratio(model_image, "Model")
# verify_aspect_ratio(garment_image, "Garment")
# preprocessing: convert to RGB, resize, encode to base64
model_image, garment_image = map(lambda x: cv2.cvtColor(x, cv2.COLOR_RGB2BGR), [model_image, garment_image])
model_image, garment_image = map(resize_image, [model_image, garment_image])
model_image, garment_image = map(encode_img_to_base64, [model_image, garment_image])
# prepare data for API request
category = CATEGORY_API_MAPPING[category]
data = {
"model_image": model_image,
"garment_image": garment_image,
"category": category,
**parse_checkboxes(model_checkboxes),
}
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {FASHN_API_KEY}"}
# make API request
start_time = time.time()
async with httpx.AsyncClient() as client:
response = await client.post(f"{FASHN_API_URL}/run", headers=headers, json=data, timeout=httpx.Timeout(300.0))
if response.is_error:
raise gr.Error(f"API request failed: {response.text}")
pred_id = response.json().get("id")
logger.info(f"Prediction ID: {pred_id}")
# poll the status of the prediction
while True:
current_time = time.time()
elapsed_time = current_time - start_time
if elapsed_time > 180: # 3 minutes
raise gr.Error("Maximum polling time exceeded.")
status_response = await client.get(
f"{FASHN_API_URL}/status/{pred_id}", headers=headers, timeout=httpx.Timeout(10)
)
if status_response.is_error:
raise Exception(f"Status polling failed: {status_response.text}")
status_data = status_response.json()
if status_data["status"] not in ["starting", "in_queue", "processing", "completed"]:
error = status_data.get("error")
error_msg = f"Prediction failed: {error}"
if "NSFW" in error:
if request:
gr.Warning(f"NSFW attempt IP address: {client_ip}")
return NSFW
raise gr.Error(error_msg)
logger.info(f"Prediction status: {status_data['status']}")
if status_data["status"] == "completed":
break
await asyncio.sleep(3)
# get the result image and add a watermark
result_img = opencv_load_image_from_http(status_data["output"][0])
result_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB)
result_img = add_watermark(result_img, WATERMARK)
return result_img
# ----------------- GRADIO UI ----------------- #
with open("banner.html", "r") as file:
banner = file.read()
with open("tips.html", "r") as file:
tips = file.read()
with open("footer.html", "r") as file:
footer = file.read()
with open("docs.html", "r") as file:
docs = file.read()
CUSTOM_CSS = """
.image-container img {
max-width: 192px;
max-height: 288px;
margin: 0 auto;
border-radius: 0px;
.gradio-container {background-color: #fafafa}
"""
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Monochrome(radius_size=sizes.radius_md)) as demo:
gr.HTML(banner)
gr.HTML(tips)
with gr.Row():
with gr.Column():
model_image = gr.Image(label="Model Image", type="numpy", format="png")
# create a checkbox to toggle "remove accessories"
model_checkboxes = gr.CheckboxGroup(
choices=["Remove Accessories", "Restore Hands", "Cover Feet"], label="Additional Controls", type="value"
)
example_model = gr.Examples(
inputs=model_image,
examples_per_page=10,
examples=[
os.path.join(ASSETS_DIR, "models", img) for img in os.listdir(os.path.join(ASSETS_DIR, "models"))
],
)
with gr.Column():
garment_image = gr.Image(label="Garment Image", type="numpy", format="png")
category = gr.Radio(choices=["Top", "Bottom", "Full-body"], label="Select Category", value="Top")
example_garment = gr.Examples(
inputs=garment_image,
examples_per_page=10,
examples=[
os.path.join(ASSETS_DIR, "garments", img)
for img in os.listdir(os.path.join(ASSETS_DIR, "garments"))
],
)
with gr.Column():
result_image = gr.Image(label="Try-on Result", format="png")
run_button = gr.Button("Run")
gr.HTML(docs)
run_button.click(
fn=get_tryon_result,
inputs=[model_image, garment_image, category, model_checkboxes],
outputs=[result_image],
)
gr.HTML(footer)
if __name__ == "__main__":
ip = requests.get("http://ifconfig.me/ip", timeout=1).text.strip()
logger.info(f"VM IP address: {ip}")
demo.launch(share=False)
|