textcutobject / app.py
fantos's picture
Update app.py
d577ee4 verified
raw
history blame
10.7 kB
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# weird dance because ZeroGPU
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device) # type: ignore
assert isinstance(gd_model, GroundingDinoForObjectDetection)
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
assert isinstance(gd_processor, GroundingDinoProcessor)
# Grounding Dino expects a dot after each category.
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(
img: Image.Image,
mask_img: Image.Image,
defringe: bool = True,
) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
# Mitigate edge halo effects via color decontamination
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
@spaces.GPU
def _gpu_process(
img: Image.Image,
prompt: str | BoundingBox | None,
) -> tuple[Image.Image, BoundingBox | None, list[str]]:
# Because of ZeroGPU shenanigans, we need a *single* function with the
# `spaces.GPU` decorator that *does not* contain postprocessing.
time_log: list[str] = []
if isinstance(prompt, str):
t0 = time.time()
bbox = gd_detect(img, prompt)
time_log.append(f"detect: {time.time() - t0}")
if not bbox:
print(time_log[0])
raise gr.Error("No object detected")
else:
bbox = prompt
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
def _process(
img: Image.Image,
prompt: str | BoundingBox | None,
) -> tuple[tuple[Image.Image, Image.Image], str]: # Changed return type
# enforce max dimensions for pymatting performance reasons
if img.width > 2048 or img.height > 2048:
orig_res = max(img.width, img.height)
img.thumbnail((2048, 2048))
if isinstance(prompt, tuple):
x0, y0, x1, y2 = (int(x * 2048 / orig_res) for x in prompt)
prompt = (x0, y0, x1, y2)
mask, bbox, time_log = _gpu_process(img, prompt)
t0 = time.time()
masked_alpha = apply_mask(img, mask, defringe=True)
time_log.append(f"crop: {time.time() - t0}")
print(", ".join(time_log))
masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
bbox = thresholded.getbbox()
to_dl = masked_alpha.crop(bbox)
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
to_dl.save(temp, format="PNG")
temp.close()
# Return the file path instead of a DownloadButton
return (img, masked_rgb), temp.name
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], str]:
assert isinstance(img := prompts["image"], Image.Image)
assert isinstance(boxes := prompts["boxes"], list)
if len(boxes) == 1:
assert isinstance(box := boxes[0], dict)
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
else:
assert len(boxes) == 0
bbox = None
return _process(img, bbox)
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
def process_prompt(img: Image.Image, prompt: str) -> tuple[tuple[Image.Image, Image.Image], str]:
return _process(img, prompt)
def on_change_prompt(img: Image.Image | None, prompt: str | None):
return gr.update(interactive=bool(img and prompt))
# Function to update download button with file path
def update_download_button(file_path: str | None) -> gr.update:
if file_path:
return gr.update(value=file_path, interactive=True)
else:
return gr.update(value=None, interactive=False)
css = """
footer {
visibility: hidden;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Tab("By prompt", id="tab_prompt"):
with gr.Row():
with gr.Column():
iimg = gr.Image(type="pil", label="Input")
prompt = gr.Textbox(label="What should we cut?")
btn = gr.Button("Cut Out Object", interactive=False)
with gr.Column():
oimg = ImageSlider(label="Before / After", show_download_button=False, interactive=False)
# Use a File component for download instead of DownloadButton
file_output = gr.File(label="Download Cutout", visible=False)
dlbt = gr.DownloadButton("Download Cutout", interactive=False)
for inp in [iimg, prompt]:
inp.change(
fn=on_change_prompt,
inputs=[iimg, prompt],
outputs=[btn],
)
# Process and update both outputs
def process_and_update_prompt(img, prompt):
result, file_path = process_prompt(img, prompt)
return result, file_path, update_download_button(file_path)
btn.click(
fn=process_and_update_prompt,
inputs=[iimg, prompt],
outputs=[oimg, file_output, dlbt],
api_name=False,
)
examples = [
[
"examples/text.jpg",
"text",
],
[
"examples/potted-plant.jpg",
"potted plant",
],
[
"examples/chair.jpg",
"chair",
],
[
"examples/black-lamp.jpg",
"black lamp",
],
]
# Don't cache examples to avoid the error
ex = gr.Examples(
examples=examples,
inputs=[iimg, prompt],
outputs=[oimg, file_output], # Remove dlbt from outputs
fn=process_prompt,
cache_examples=False, # Disable caching
)
with gr.Tab("By bounding box", id="tab_bb"):
with gr.Row():
with gr.Column():
annotator = image_annotator(
image_type="pil",
disable_edit_boxes=True,
show_download_button=False,
show_share_button=False,
single_box=True,
label="Input",
)
btn2 = gr.Button("Cut Out Object", interactive=False)
with gr.Column():
oimg2 = ImageSlider(label="Before / After", show_download_button=False)
file_output2 = gr.File(label="Download Cutout", visible=False)
dlbt2 = gr.DownloadButton("Download Cutout", interactive=False)
annotator.change(
fn=on_change_bbox,
inputs=[annotator],
outputs=[btn2],
)
# Process and update both outputs
def process_and_update_bbox(prompts):
result, file_path = process_bbox(prompts)
return result, file_path, update_download_button(file_path)
btn2.click(
fn=process_and_update_bbox,
inputs=[annotator],
outputs=[oimg2, file_output2, dlbt2],
api_name=False,
)
examples = [
{
"image": "examples/text.jpg",
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
},
{
"image": "examples/potted-plant.jpg",
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
},
{
"image": "examples/chair.jpg",
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}],
},
{
"image": "examples/black-lamp.jpg",
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}],
},
]
ex2 = gr.Examples(
examples=examples,
inputs=[annotator],
outputs=[oimg2, file_output2], # Remove dlbt2 from outputs
fn=process_bbox,
cache_examples=False, # Disable caching
)
demo.queue(max_size=30, api_open=False)
demo.launch(show_api=False)