Spaces:
Sleeping
Sleeping
File size: 8,333 Bytes
e1f7ceb 6528fbf b2358ad e1f7ceb aa56dd1 e1f7ceb aa56dd1 e1f7ceb 6528fbf e1f7ceb 6528fbf e1f7ceb 6528fbf e1f7ceb 6528fbf e1f7ceb 2697417 e1f7ceb 839bec8 e1f7ceb 839bec8 e1f7ceb 839bec8 e1f7ceb 6528fbf e1f7ceb 059deb6 e1f7ceb feec42f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# utils.py
import cv2
import numpy as np
from PIL import Image, PngImagePlugin, ImageDraw
import json
from datetime import datetime
from cryptography.fernet import Fernet
import base64
import hashlib
class WatermarkProcessor:
def __init__(self, encryption_key=None):
"""Initialize with optional encryption key"""
if encryption_key:
self.fernet = Fernet(encryption_key)
else:
key = Fernet.generate_key()
self.fernet = Fernet(key)
def to_bin(self, data):
"""Convert data to binary format as string"""
if isinstance(data, str):
return ''.join(format(x, '08b') for x in data.encode('utf-8'))
elif isinstance(data, bytes):
return ''.join(format(x, '08b') for x in data)
elif isinstance(data, np.ndarray):
return [format(i, "08b") for i in data]
elif isinstance(data, int) or isinstance(data, np.uint8):
return format(data, "08b")
else:
raise TypeError("Type not supported.")
def create_preview(self, image_path, watermark_text, opacity=0.3):
"""Create a preview of watermark on image"""
try:
image = Image.open(image_path)
txt_layer = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(txt_layer)
# Calculate text position
text_width = draw.textlength(watermark_text)
text_x = (image.width - text_width) // 2
text_y = image.height // 2
# Add watermark text
draw.text((text_x, text_y), watermark_text,
fill=(255, 255, 255, int(255 * opacity)))
# Combine layers
preview = Image.alpha_composite(image.convert('RGBA'), txt_layer)
return preview
except Exception as e:
return None
def png_encode(self, im_name, extra):
"""Encode watermark using PNG metadata"""
try:
im = Image.open(im_name)
info = PngImagePlugin.PngInfo()
info.add_text("TXT", extra)
im.save("test.png", pnginfo=info)
return "test.png", "Watermark added successfully"
except Exception as e:
return im_name, f"Error adding watermark: {str(e)}"
def encode(self, image_path, watermark_text, metadata=None):
"""Encode watermark using steganography with encryption"""
try:
image = cv2.imread(image_path)
if image is None:
raise ValueError("Could not read image file")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Prepare watermark data
watermark_data = {
'text': watermark_text,
'timestamp': datetime.now().isoformat(),
'metadata': metadata or {}
}
# Add image hash
image_copy = image.copy() & 0xFE # Clear LSB
watermark_data['image_hash'] = hashlib.sha256(image_copy.tobytes()).hexdigest()
# Encrypt data
secret_data = json.dumps(watermark_data)
secret_data = f"{secret_data}#####=====" # Add delimiters
binary_secret_data = self.to_bin(secret_data)
# Calculate capacity
n_bytes = image.shape[0] * image.shape[1] * 3 // 8
if len(binary_secret_data) > n_bytes * 8:
return image_path, "Watermark is too large for Image Size"
# Embed data
data_index = 0
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if data_index < len(binary_secret_data):
pixel = image[i, j]
for k in range(3):
if data_index < len(binary_secret_data):
binary_value = format(pixel[k], '08b')
binary_value = binary_value[:-1] + binary_secret_data[data_index]
image[i, j, k] = int(binary_value, 2)
data_index += 1
# Save result
output_path = "watermarked_" + datetime.now().strftime("%Y%m%d_%H%M%S") + ".png"
cv2.imwrite(output_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
return output_path, "Watermark added successfully"
except Exception as e:
return image_path, f"Error in encoding: {str(e)}"
def decode(self, image_path):
"""Decode watermark with decryption"""
try:
# Try PNG metadata method first
try:
im = Image.open(image_path)
if "TXT" in im.info:
return im.info["TXT"]
except:
pass
# Steganography method
image = cv2.imread(image_path)
if image is None:
raise ValueError("Could not read image file")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Extract binary data
binary_data = ""
for row in image:
for pixel in row:
for value in pixel:
binary_data += format(value, '08b')[-1]
# Convert to bytes
bytes_data = bytearray()
for i in range(0, len(binary_data), 8):
if i + 8 <= len(binary_data):
byte = int(binary_data[i:i+8], 2)
bytes_data.append(byte)
# Process the data
decoded_data = bytes(bytes_data).decode('utf-8')
if "=====" in decoded_data:
decoded_data = decoded_data.split("=====")[0]
if "#####" in decoded_data:
decoded_data = decoded_data.split("#####")[0]
try:
# Parse JSON data
watermark_data = json.loads(decoded_data)
# Verify image hash
image_copy = image.copy() & 0xFE
current_hash = hashlib.sha256(image_copy.tobytes()).hexdigest()
if current_hash != watermark_data.get('image_hash'):
return "Warning: Image has been modified after watermarking"
return json.dumps(watermark_data, indent=2, ensure_ascii=False)
except:
return decoded_data
except Exception as e:
return f"Error in decoding: {str(e)}"
def analyze_quality(self, original_path, watermarked_path):
"""Analyze watermark quality"""
try:
original = cv2.imread(original_path)
watermarked = cv2.imread(watermarked_path)
if original is None or watermarked is None:
raise ValueError("Could not read image files")
# Calculate PSNR
mse = np.mean((original - watermarked) ** 2)
if mse == 0:
psnr = float('inf')
else:
psnr = 20 * np.log10(255.0 / np.sqrt(mse))
# Calculate histogram similarity
hist_original = cv2.calcHist([original], [0], None, [256], [0, 256])
hist_watermarked = cv2.calcHist([watermarked], [0], None, [256], [0, 256])
hist_correlation = cv2.compareHist(hist_original, hist_watermarked, cv2.HISTCMP_CORREL)
# Count modified pixels
diff = cv2.bitwise_xor(original, watermarked)
modified_pixels = np.count_nonzero(diff)
report = {
'psnr': round(psnr, 2),
'histogram_similarity': round(hist_correlation, 4),
'modified_pixels': modified_pixels,
'image_size': original.shape,
'quality_score': round((psnr / 50) * 100, 2) if psnr != float('inf') else 100
}
return json.dumps(report, indent=2)
except Exception as e:
return f"Error in quality analysis: {str(e)}"
|