Spaces:
Running
Running
File size: 5,908 Bytes
32b5c3d 23f56a9 32b5c3d 15ad7ae 32b5c3d 2a90940 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# app.py
import gradio as gr
from utils import WatermarkProcessor
import json
import tempfile
import os
from datetime import datetime
import cv2
from PIL import Image
import numpy as np
class WatermarkGUI:
def __init__(self):
self.processor = WatermarkProcessor()
self.create_interface()
def process_watermark(self, image, watermark_text, author, purpose, opacity):
"""Process watermark with metadata"""
if image is None or watermark_text.strip() == "":
return None, "Please provide both image and watermark text"
metadata = {
"author": author,
"purpose": purpose,
"opacity": opacity
}
# Save temporary image
temp_path = tempfile.mktemp(suffix='.png')
Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).save(temp_path)
# Add watermark
result_path, message = self.processor.encode(temp_path, watermark_text, metadata)
if "Error" in message:
return None, message
# Generate quality report
quality_report = self.processor.analyze_quality(temp_path, result_path)
quality_data = json.loads(quality_report)
# Create formatted report
report = f"""
### Watermark Quality Report
- Quality Score: {quality_data['quality_score']}%
- PSNR: {quality_data['psnr']} dB
- Histogram Similarity: {quality_data['histogram_similarity'] * 100:.2f}%
- Modified Pixels: {quality_data['modified_pixels']:,}
### Metadata
- Author: {author}
- Purpose: {purpose}
- Timestamp: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
"""
os.remove(temp_path)
return cv2.imread(result_path), report
def detect_watermark(self, image):
"""Detect and extract watermark"""
if image is None:
return "Please provide an image"
# Save temporary image
temp_path = tempfile.mktemp(suffix='.png')
Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).save(temp_path)
# Extract watermark
result = self.processor.decode(temp_path)
os.remove(temp_path)
try:
# Parse JSON result
data = json.loads(result)
report = f"""
### Extracted Watermark
Text: {data['text']}
### Metadata
- Timestamp: {data['timestamp']}
- Author: {data['metadata'].get('author', 'N/A')}
- Purpose: {data['metadata'].get('purpose', 'N/A')}
"""
return report
except:
return result
def create_interface(self):
"""Create Gradio interface"""
with gr.Blocks(css="footer {visibility: hidden}") as self.interface:
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fgunship999-SecureWatermark.hf.space"> <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fgunship999-SecureWatermark.hf.space&countColor=%23263759" /> </a>""")
gr.Markdown("""# Enhanced Image Watermarking System
### Welcome to Secure Watermark - Advanced Image Protection System
🔒 **Key Features:**
- **Dual Watermarking Technology**: Supports both steganography and PNG metadata
- **Secure Encryption**: Military-grade encryption for watermark data
- **Quality Assurance**: Real-time quality analysis and reporting
- **Metadata Support**: Track authorship, purpose, and timestamps
- **Integrity Verification**: Hash-based image tampering detection
💡 **Perfect for:**
- Copyright Protection
- Digital Asset Management
- Document Authentication
- Creative Work Protection
Try our system by uploading an image and adding your watermark below!
""")
with gr.Tabs():
# Add Watermark Tab
with gr.Tab("Add Watermark"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="numpy")
watermark_text = gr.Textbox(label="Watermark Text")
author = gr.Textbox(label="Author", placeholder="Enter author name")
purpose = gr.Textbox(label="Purpose", placeholder="Enter watermark purpose")
opacity = gr.Slider(minimum=0.1, maximum=1.0, value=0.3,
label="Watermark Opacity")
with gr.Row():
process_btn = gr.Button("Add Watermark", variant="primary")
with gr.Column():
result_image = gr.Image(label="Watermarked Image")
quality_report = gr.Markdown(label="Quality Report")
# Detect Watermark Tab
with gr.Tab("Detect Watermark"):
with gr.Row():
detect_image = gr.Image(label="Input Image", type="numpy")
detect_result = gr.Markdown(label="Detected Watermark")
detect_btn = gr.Button("Detect Watermark")
# Event handlers
process_btn.click(
fn=self.process_watermark,
inputs=[input_image, watermark_text, author, purpose, opacity],
outputs=[result_image, quality_report]
)
detect_btn.click(
fn=self.detect_watermark,
inputs=[detect_image],
outputs=detect_result
)
def launch(self, *args, **kwargs):
"""Launch the interface"""
self.interface.launch(*args, **kwargs)
if __name__ == "__main__":
app = WatermarkGUI()
app.launch() |