File size: 7,857 Bytes
ae3e8a6
 
6528fbf
b2358ad
ae3e8a6
 
 
 
 
 
aa56dd1
ae3e8a6
6eb0ffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# utils.py

import cv2
import numpy as np
from PIL import Image, PngImagePlugin, ImageDraw
import json
from datetime import datetime
from cryptography.fernet import Fernet
import base64
import hashlib

class WatermarkProcessor:
     def __init__(self, encryption_key=None):
          """Initialize with optional encryption key"""
          if encryption_key:
               self.fernet = Fernet(encryption_key)
          else:
               key = Fernet.generate_key()
               self.fernet = Fernet(key)

     def to_bin(self, data):
          """Convert data to binary format as string"""
          if isinstance(data, str):
               return ''.join(format(ord(char), '08b') for char in data)
          elif isinstance(data, bytes):
               return ''.join(format(x, '08b') for x in data)
          elif isinstance(data, np.ndarray):
               return [format(i, "08b") for i in data]
          elif isinstance(data, int) or isinstance(data, np.uint8):
               return format(data, "08b")
          else:
               raise TypeError("Type not supported.")

     def create_preview(self, image_path, watermark_text, opacity=0.3):
          """Create a preview of watermark on image"""
          try:
               image = Image.open(image_path)
               txt_layer = Image.new('RGBA', image.size, (255, 255, 255, 0))
               draw = ImageDraw.Draw(txt_layer)
               
               # Calculate text position
               text_width = draw.textlength(watermark_text)
               text_x = (image.width - text_width) // 2
               text_y = image.height // 2
               
               # Add watermark text
               draw.text((text_x, text_y), watermark_text, 
                         fill=(255, 255, 255, int(255 * opacity)))
               
               # Combine layers
               preview = Image.alpha_composite(image.convert('RGBA'), txt_layer)
               return preview
          except Exception as e:
               return None

     def png_encode(self, im_name, extra):
          """Encode watermark using PNG metadata"""
          try:
               im = Image.open(im_name)
               info = PngImagePlugin.PngInfo()
               info.add_text("TXT", extra)
               im.save("test.png", pnginfo=info)
               return "test.png", "Watermark added successfully"
          except Exception as e:
               return im_name, f"Error adding watermark: {str(e)}"

     def encode(self, image_path, watermark_text, metadata=None):
          """Encode watermark using simple LSB steganography"""
          try:
               image = cv2.imread(image_path)
               if image is None:
                    raise ValueError("Could not read image file")

               # Prepare watermark data
               data = {
                    'text': watermark_text,
                    'timestamp': datetime.now().isoformat(),
                    'metadata': metadata or {}
               }
               
               # Convert to string and add delimiter
               secret_data = json.dumps(data, ensure_ascii=False) + "###END###"
               
               # Convert to binary string
               binary_secret = ''.join(format(ord(char), '08b') for char in secret_data)
               
               # Check capacity
               if len(binary_secret) > image.shape[0] * image.shape[1] * 3:
                    return image_path, "Error: Image too small for watermark data"

               # Embed data
               data_index = 0
               for i in range(image.shape[0]):
                    for j in range(image.shape[1]):
                         for k in range(3):
                              if data_index < len(binary_secret):
                                   # Clear LSB and add data bit
                                   image[i, j, k] = (image[i, j, k] & ~1) | int(binary_secret[data_index])
                                   data_index += 1
                              else:
                                   break
                         if data_index >= len(binary_secret):
                              break
                    if data_index >= len(binary_secret):
                         break

               # Save result
               output_path = f"watermarked_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
               cv2.imwrite(output_path, image)
               return output_path, "Watermark added successfully"
               
          except Exception as e:
               return image_path, f"Error in encoding: {str(e)}"

     def decode(self, image_path):
          """Decode watermark using simple LSB steganography"""
          try:
               image = cv2.imread(image_path)
               if image is None:
                    raise ValueError("Could not read image file")

               # Extract binary string
               binary_data = ''
               for i in range(image.shape[0]):
                    for j in range(image.shape[1]):
                         for k in range(3):
                              binary_data += str(image[i, j, k] & 1)

               # Convert binary to string
               decoded_chars = []
               for i in range(0, len(binary_data), 8):
                    byte = binary_data[i:i+8]
                    if len(byte) == 8:
                         decoded_chars.append(chr(int(byte, 2)))
                         # Check for delimiter
                         if ''.join(decoded_chars[-7:]) == "###END###":
                              decoded_text = ''.join(decoded_chars[:-7])
                              try:
                                   # Parse JSON data
                                   watermark_data = json.loads(decoded_text)
                                   return json.dumps(watermark_data, ensure_ascii=False, indent=2)
                              except json.JSONDecodeError:
                                   return decoded_text
               
               return "Error: No valid watermark found"

          except Exception as e:
               return f"Error in decoding: {str(e)}"

     def analyze_quality(self, original_path, watermarked_path):
          """Analyze watermark quality"""
          try:
               original = cv2.imread(original_path)
               watermarked = cv2.imread(watermarked_path)
               
               if original is None or watermarked is None:
                    raise ValueError("Could not read image files")
               
               # Calculate PSNR
               mse = np.mean((original - watermarked) ** 2)
               if mse == 0:
                    psnr = float('inf')
               else:
                    psnr = 20 * np.log10(255.0 / np.sqrt(mse))
               
               # Calculate histogram similarity
               hist_original = cv2.calcHist([original], [0], None, [256], [0, 256])
               hist_watermarked = cv2.calcHist([watermarked], [0], None, [256], [0, 256])
               hist_correlation = cv2.compareHist(hist_original, hist_watermarked, cv2.HISTCMP_CORREL)
               
               # Count modified pixels
               diff = cv2.bitwise_xor(original, watermarked)
               modified_pixels = np.count_nonzero(diff)
               
               report = {
                    'psnr': round(psnr, 2),
                    'histogram_similarity': round(hist_correlation, 4),
                    'modified_pixels': modified_pixels,
                    'image_size': original.shape,
                    'quality_score': round((psnr / 50) * 100, 2) if psnr != float('inf') else 100
               }
               
               return json.dumps(report, indent=2)
               
          except Exception as e:
               return f"Error in quality analysis: {str(e)}"