File size: 8,139 Bytes
6528fbf
b2358ad
ae3e8a6
 
 
 
 
 
aa56dd1
ae3e8a6
4263379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c8c36e
 
 
 
4263379
 
 
 
 
 
 
 
 
 
 
 
1c8c36e
4263379
1c8c36e
 
 
 
 
 
4263379
 
 
 
 
1c8c36e
4263379
 
 
 
 
 
 
1c8c36e
 
4263379
 
 
 
 
d9e4b43
4263379
 
 
 
1c8c36e
4263379
 
 
 
 
 
 
 
1c8c36e
 
 
 
4263379
1c8c36e
4263379
 
 
 
 
 
 
 
 
 
 
1c8c36e
4263379
 
 
 
 
 
1c8c36e
 
 
 
 
 
4263379
1c8c36e
 
 
 
 
 
 
 
4263379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import cv2
import numpy as np
from PIL import Image, PngImagePlugin, ImageDraw
import json
from datetime import datetime
from cryptography.fernet import Fernet
import base64
import hashlib

class WatermarkProcessor:
    def __init__(self, encryption_key=None):
        """Initialize with optional encryption key"""
        if encryption_key:
            self.fernet = Fernet(encryption_key)
        else:
            key = Fernet.generate_key()
            self.fernet = Fernet(key)

    def to_bin(self, data):
        """Convert data to binary format as string"""
        if isinstance(data, str):
            return ''.join(format(ord(char), '08b') for char in data)
        elif isinstance(data, bytes):
            return ''.join(format(x, '08b') for x in data)
        elif isinstance(data, np.ndarray):
            return [format(i, "08b") for i in data]
        elif isinstance(data, int) or isinstance(data, np.uint8):
            return format(data, "08b")
        else:
            raise TypeError("Type not supported.")

    def create_preview(self, image_path, watermark_text, opacity=0.3):
        """Create a preview of watermark on image"""
        try:
            image = Image.open(image_path)
            txt_layer = Image.new('RGBA', image.size, (255, 255, 255, 0))
            draw = ImageDraw.Draw(txt_layer)
            
            # Calculate text position
            text_width = draw.textlength(watermark_text)
            text_x = (image.width - text_width) // 2
            text_y = image.height // 2
            
            # Add watermark text
            draw.text((text_x, text_y), watermark_text, 
                      fill=(255, 255, 255, int(255 * opacity)))
            
            # Combine layers
            preview = Image.alpha_composite(image.convert('RGBA'), txt_layer)
            return preview
        except Exception as e:
            return None

    def png_encode(self, im_name, extra):
        """Encode watermark using PNG metadata"""
        try:
            im = Image.open(im_name)
            info = PngImagePlugin.PngInfo()
            info.add_text("TXT", extra)
            im.save("test.png", pnginfo=info)
            return "test.png", "Watermark added successfully"
        except Exception as e:
            return im_name, f"Error adding watermark: {str(e)}"

    def encode(self, image_path, watermark_text, metadata=None):
        """Encode watermark using simple LSB steganography with header
        
        헤더(32비트)는 watermark 데이터(UTF-8 문자열)의 길이(문자수)를 이진 문자열로 저장합니다.
        """
        try:
            image = cv2.imread(image_path)
            if image is None:
                raise ValueError("Could not read image file")

            # Prepare watermark data
            data = {
                'text': watermark_text,
                'timestamp': datetime.now().isoformat(),
                'metadata': metadata or {}
            }
            
            # Convert data to string (UTF-8)
            json_str = json.dumps(data, ensure_ascii=False)
            # 헤더: 32비트에 데이터 길이(문자수)를 저장
            data_length = len(json_str)
            header = format(data_length, '032b')
            # 본문: 각 문자를 8비트 이진수로 변환
            body = ''.join(format(ord(char), '08b') for char in json_str)
            binary_data = header + body
            
            # Check capacity
            if len(binary_data) > image.shape[0] * image.shape[1] * 3:
                return image_path, "Error: Image too small for watermark data"

            # Embed data into LSB of each pixel
            data_index = 0
            for i in range(image.shape[0]):
                for j in range(image.shape[1]):
                    for k in range(3):
                        if data_index < len(binary_data):
                            pixel = int(image[i, j, k])
                            # Clear the LSB
                            pixel = pixel & 0xFE
                            # Set the LSB according to our data bit
                            pixel = pixel | (int(binary_data[data_index]) & 1)
                            image[i, j, k] = np.uint8(pixel)
                            data_index += 1
                        else:
                            break
                    if data_index >= len(binary_data):
                        break
                if data_index >= len(binary_data):
                    break

            # Save result image (PNG: lossless)
            output_path = f"watermarked_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
            cv2.imwrite(output_path, image)
            return output_path, "Watermark added successfully"
            
        except Exception as e:
            return image_path, f"Error in encoding: {str(e)}"

    def decode(self, image_path):
        """Decode watermark using simple LSB steganography with header
        
        먼저 32비트를 읽어 watermark 데이터의 길이(문자수)를 구한 후, 해당 길이만큼의 데이터를 추출합니다.
        """
        try:
            # PNG 메타데이터 먼저 확인
            try:
                im = Image.open(image_path)
                if "TXT" in im.info:
                    return im.info["TXT"]
            except:
                pass

            image = cv2.imread(image_path)
            if image is None:
                raise ValueError("Could not read image file")

            # 모든 픽셀의 LSB를 읽어 이진 문자열 생성
            binary_data = ''
            for i in range(image.shape[0]):
                for j in range(image.shape[1]):
                    for k in range(3):
                        binary_data += str(image[i, j, k] & 1)

            # 먼저 헤더(32비트)를 읽어 데이터 길이(문자수)를 결정
            header = binary_data[:32]
            data_length = int(header, 2)
            total_bits = data_length * 8
            # 본문 데이터 읽기
            message_bits = binary_data[32:32 + total_bits]
            text = ''
            for i in range(0, len(message_bits), 8):
                byte = message_bits[i:i+8]
                text += chr(int(byte, 2))
            try:
                data = json.loads(text)
                return json.dumps(data, ensure_ascii=False, indent=2)
            except json.JSONDecodeError:
                return text
        except Exception as e:
            return f"Error in decoding: {str(e)}"

    def analyze_quality(self, original_path, watermarked_path):
        """Analyze watermark quality"""
        try:
            original = cv2.imread(original_path)
            watermarked = cv2.imread(watermarked_path)
            
            if original is None or watermarked is None:
                raise ValueError("Could not read image files")
            
            # Calculate PSNR
            mse = np.mean((original - watermarked) ** 2)
            if mse == 0:
                psnr = float('inf')
            else:
                psnr = 20 * np.log10(255.0 / np.sqrt(mse))
            
            # Calculate histogram similarity
            hist_original = cv2.calcHist([original], [0], None, [256], [0, 256])
            hist_watermarked = cv2.calcHist([watermarked], [0], None, [256], [0, 256])
            hist_correlation = cv2.compareHist(hist_original, hist_watermarked, cv2.HISTCMP_CORREL)
            
            # Count modified pixels
            diff = cv2.bitwise_xor(original, watermarked)
            modified_pixels = np.count_nonzero(diff)
            
            report = {
                'psnr': round(psnr, 2),
                'histogram_similarity': round(hist_correlation, 4),
                'modified_pixels': modified_pixels,
                'image_size': original.shape,
                'quality_score': round((psnr / 50) * 100, 2) if psnr != float('inf') else 100
            }
            
            return json.dumps(report, indent=2)
            
        except Exception as e:
            return f"Error in quality analysis: {str(e)}"