import numpy as np import torch import torch.nn as nn import gradio as gr from PIL import Image import torchvision.transforms as transforms import os # CPU 전용 설정 torch.set_num_threads(4) # CPU 스레드 수 제한 torch.set_grad_enabled(False) # 추론 모드만 사용 norm_layer = nn.InstanceNorm2d class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features) ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) class Generator(nn.Module): def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): super(Generator, self).__init__() # Initial convolution block model0 = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True) ] self.model0 = nn.Sequential(*model0) # Downsampling model1 = [] in_features = 64 out_features = in_features*2 for _ in range(2): model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features*2 self.model1 = nn.Sequential(*model1) # Residual blocks model2 = [] for _ in range(n_residual_blocks): model2 += [ResidualBlock(in_features)] self.model2 = nn.Sequential(*model2) # Upsampling model3 = [] out_features = in_features//2 for _ in range(2): model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features//2 self.model3 = nn.Sequential(*model3) # Output layer model4 = [ nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7) ] if sigmoid: model4 += [nn.Sigmoid()] self.model4 = nn.Sequential(*model4) def forward(self, x): out = self.model0(x) out = self.model1(out) out = self.model2(out) out = self.model3(out) out = self.model4(out) return out # CPU 전용 모델 로드 def load_models(): try: print("Initializing models in CPU mode...") model1 = Generator(3, 1, 3) model2 = Generator(3, 1, 3) # Load models in CPU mode model1.load_state_dict(torch.load('model.pth', map_location='cpu')) model2.load_state_dict(torch.load('model2.pth', map_location='cpu')) model1.eval() model2.eval() print("Models loaded successfully") return model1, model2 except Exception as e: print(f"Error loading models: {str(e)}") raise gr.Error("Failed to initialize models. Please check model files.") try: print("Starting model initialization...") model1, model2 = load_models() print("Model initialization completed") except Exception as e: print(f"Critical error: {str(e)}") raise gr.Error("Failed to start the application") def process_image(input_img, version, line_thickness=1.0): try: # 이미지 로드 및 전처리 original_img = Image.open(input_img) original_size = original_img.size transform = transforms.Compose([ transforms.Resize(256, Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) input_tensor = transform(original_img).unsqueeze(0) # 모델 처리 with torch.no_grad(): if version == 'Simple Lines': output = model2(input_tensor) else: output = model1(input_tensor) output = output * line_thickness # 결과 이미지 생성 output_img = transforms.ToPILImage()(output.squeeze().clamp(0, 1)) output_img = output_img.resize(original_size, Image.BICUBIC) return output_img except Exception as e: raise gr.Error(f"이미지 처리 에러: {str(e)}") # Simple UI with gr.Blocks() as iface: gr.Markdown("# ✨ Magic Drawings") gr.Markdown("Transform your photos into magical line art with AI") with gr.Row(): with gr.Column(): input_image = gr.Image(type="filepath", label="Upload Image") version = gr.Radio( choices=['Complex Lines', 'Simple Lines'], value='Simple Lines', label="Art Style" ) line_thickness = gr.Slider( minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Line Thickness" ) with gr.Column(): output_image = gr.Image(type="pil", label="Generated Art") generate_btn = gr.Button("Generate Magic", variant="primary") # Event handlers generate_btn.click( fn=process_image, inputs=[input_image, version, line_thickness], outputs=output_image ) # 실행 iface.launch( server_name="0.0.0.0", server_port=7860, share=False )