import numpy as np import torch import torch.nn as nn import gradio as gr from PIL import Image import torchvision.transforms as transforms import os import io import base64 import json from datetime import datetime import torch.nn.functional as F # Force CPU mode for Zero GPU environment device = torch.device('cpu') torch.set_num_threads(4) # Optimize CPU performance # Style presets STYLE_PRESETS = { "Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0}, "Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8}, "Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2}, "High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7}, } # History management class HistoryManager: def __init__(self, max_entries=10): self.max_entries = max_entries self.history_file = "processing_history.json" self.history = self.load_history() def load_history(self): try: if os.path.exists(self.history_file): with open(self.history_file, 'r') as f: return json.load(f) return [] except Exception: return [] def save_history(self): try: with open(self.history_file, 'w') as f: json.dump(self.history[-self.max_entries:], f) except Exception as e: print(f"Error saving history: {e}") def add_entry(self, input_path, settings): entry = { "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "input_file": os.path.basename(input_path), "settings": settings } self.history.append(entry) if len(self.history) > self.max_entries: self.history.pop(0) self.save_history() def get_latest_settings(self): if self.history: return self.history[-1]["settings"] return None # Initialize history manager history_manager = HistoryManager() [Previous model and generator code remains the same...] def apply_preset(preset_name): """Apply a style preset and return the settings""" if preset_name in STYLE_PRESETS: return ( STYLE_PRESETS[preset_name]["line_thickness"], STYLE_PRESETS[preset_name]["contrast"], STYLE_PRESETS[preset_name]["brightness"], True # Enable enhancement for presets ) return (1.0, 1.0, 1.0, False) def save_image_with_metadata(image, output_path, settings): """Save image with processing metadata""" try: # Save image image.save(output_path) # Save metadata metadata_path = output_path + ".json" with open(metadata_path, 'w') as f: json.dump({ "processing_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "settings": settings }, f) except Exception as e: print(f"Error saving image metadata: {e}") def get_image_download_link(image): """Create a download link for the processed image""" buffered = io.BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() href = f'data:image/png;base64,{img_str}' return href def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0, brightness=1.0, enable_enhancement=False, output_size="Original"): try: # Apply preset if selected if preset_name != "Custom": line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name) # Open and process input image original_img = Image.open(input_img) original_size = original_img.size # Adjust output size if output_size != "Original": width, height = map(int, output_size.split("x")) target_size = (width, height) else: target_size = original_size # Transform pipeline transform = transforms.Compose([ transforms.Resize(256, Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) input_tensor = transform(original_img).unsqueeze(0).to(device) # Process through selected model with torch.no_grad(): if version == 'Simple Lines': output = model2(input_tensor) else: output = model1(input_tensor) # Apply line thickness adjustment output = output * line_thickness # Convert to image output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1)) # Apply enhancements if enabled if enable_enhancement: output_img = enhance_lines(output_img, contrast, brightness) # Resize to target size output_img = output_img.resize(target_size, Image.BICUBIC) # Save to history settings = { "version": version, "preset": preset_name, "line_thickness": line_thickness, "contrast": contrast, "brightness": brightness, "enable_enhancement": enable_enhancement, "output_size": output_size } history_manager.add_entry(input_img, settings) return output_img except Exception as e: raise gr.Error(f"Error processing image: {str(e)}") # Extended custom CSS custom_css = """ .gradio-container { font-family: 'Helvetica Neue', Arial, sans-serif; max-width: 1200px !important; margin: auto; } .gr-button { border-radius: 8px; background: linear-gradient(45deg, #3498db, #2980b9); border: none; color: white; transition: all 0.3s ease; } .gr-button:hover { background: linear-gradient(45deg, #2980b9, #3498db); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0,0,0,0.15); } .gr-button.secondary { background: linear-gradient(45deg, #95a5a6, #7f8c8d); } .gr-input { border-radius: 8px; border: 2px solid #3498db; transition: all 0.3s ease; } .gr-input:focus { border-color: #2980b9; box-shadow: 0 0 0 2px rgba(41,128,185,0.2); } .gr-form { border-radius: 12px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); padding: 20px; } .gr-header { text-align: center; margin-bottom: 2em; } """ # Create Gradio interface with enhanced UI with gr.Blocks(css=custom_css) as iface: with gr.Row(elem_classes="gr-header"): gr.Markdown("# 🎨 Advanced Line Drawing Generator") gr.Markdown("Transform your images into beautiful line drawings with advanced controls") with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(type="filepath", label="Upload Image") with gr.Row(): version = gr.Radio( choices=['Complex Lines', 'Simple Lines'], value='Simple Lines', label="Drawing Style" ) preset_selector = gr.Dropdown( choices=["Custom"] + list(STYLE_PRESETS.keys()), value="Custom", label="Style Preset" ) with gr.Accordion("Advanced Settings", open=False): output_size = gr.Dropdown( choices=["Original", "512x512", "1024x1024", "2048x2048"], value="Original", label="Output Size" ) line_thickness = gr.Slider( minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Line Thickness" ) enable_enhancement = gr.Checkbox( label="Enable Enhancement", value=False ) with gr.Group(visible=False) as enhancement_controls: contrast = gr.Slider( minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Contrast" ) brightness = gr.Slider( minimum=0.5, maximum=1.5, value=1.0, step=0.1, label="Brightness" ) with gr.Column(scale=1): output_image = gr.Image(type="pil", label="Generated Line Drawing") with gr.Row(): generate_btn = gr.Button("Generate", variant="primary", size="lg") clear_btn = gr.Button("Clear", variant="secondary", size="lg") # Event handlers enable_enhancement.change( fn=lambda x: gr.Group(visible=x), inputs=[enable_enhancement], outputs=[enhancement_controls] ) preset_selector.change( fn=apply_preset, inputs=[preset_selector], outputs=[line_thickness, contrast, brightness, enable_enhancement] ) generate_btn.click( fn=predict, inputs=[ input_image, version, preset_selector, line_thickness, contrast, brightness, enable_enhancement, output_size ], outputs=output_image ) clear_btn.click( fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"), inputs=[], outputs=[ input_image, version, preset_selector, line_thickness, contrast, brightness, enable_enhancement, output_size ] ) # Launch the interface iface.launch( server_name="0.0.0.0", server_port=7860, share=False, debug=False )