import gradio as gr from gradio_client import Client def get_caption(image_in): client = Client("https://vikhyatk-moondream1.hf.space/") result = client.predict( image_in, "Describe the image", api_name="/answer_question" ) caption = result['choices'][0]['text'] return caption def get_lcm(prompt): client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/") images = [] for _ in range(4): # 4개의 이미지 생성 result = client.predict( prompt, # str in 'parameter_5' Textbox component 0.3, # float (numeric value between 0.0 and 5) in 'Guidance' Slider component 8, # float (numeric value between 2 and 10) in 'Steps' Slider component 0, # float (numeric value between 0 and 12013012031030) in 'Seed' Slider component True, # bool in 'Randomize' Checkbox component api_name="/predict" ) images.append(result[0]) return images def infer(image_in): caption = get_caption(image_in) img_vars = get_lcm(caption) return caption, img_vars gr.Interface( title="ArXivGPT Image", description=" Image2Image Variation - LCM SDXL & Moondream1 using for image generation", fn=infer, inputs=[ gr.Image(type="filepath", label="Image input") ], outputs=[ gr.Textbox(label="Caption"), gr.Gallery(label="LCM Image variations") ] ).queue(max_size=25).launch()