Spaces:
Running
Running
Delete backup1.app.py
Browse files- backup1.app.py +0 -127
backup1.app.py
DELETED
@@ -1,127 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
-
import torchvision.transforms as transforms
|
7 |
-
|
8 |
-
norm_layer = nn.InstanceNorm2d
|
9 |
-
|
10 |
-
class ResidualBlock(nn.Module):
|
11 |
-
def __init__(self, in_features):
|
12 |
-
super(ResidualBlock, self).__init__()
|
13 |
-
|
14 |
-
conv_block = [ nn.ReflectionPad2d(1),
|
15 |
-
nn.Conv2d(in_features, in_features, 3),
|
16 |
-
norm_layer(in_features),
|
17 |
-
nn.ReLU(inplace=True),
|
18 |
-
nn.ReflectionPad2d(1),
|
19 |
-
nn.Conv2d(in_features, in_features, 3),
|
20 |
-
norm_layer(in_features)
|
21 |
-
]
|
22 |
-
|
23 |
-
self.conv_block = nn.Sequential(*conv_block)
|
24 |
-
|
25 |
-
def forward(self, x):
|
26 |
-
return x + self.conv_block(x)
|
27 |
-
|
28 |
-
|
29 |
-
class Generator(nn.Module):
|
30 |
-
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
|
31 |
-
super(Generator, self).__init__()
|
32 |
-
|
33 |
-
# Initial convolution block
|
34 |
-
model0 = [ nn.ReflectionPad2d(3),
|
35 |
-
nn.Conv2d(input_nc, 64, 7),
|
36 |
-
norm_layer(64),
|
37 |
-
nn.ReLU(inplace=True) ]
|
38 |
-
self.model0 = nn.Sequential(*model0)
|
39 |
-
|
40 |
-
# Downsampling
|
41 |
-
model1 = []
|
42 |
-
in_features = 64
|
43 |
-
out_features = in_features*2
|
44 |
-
for _ in range(2):
|
45 |
-
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
46 |
-
norm_layer(out_features),
|
47 |
-
nn.ReLU(inplace=True) ]
|
48 |
-
in_features = out_features
|
49 |
-
out_features = in_features*2
|
50 |
-
self.model1 = nn.Sequential(*model1)
|
51 |
-
|
52 |
-
model2 = []
|
53 |
-
# Residual blocks
|
54 |
-
for _ in range(n_residual_blocks):
|
55 |
-
model2 += [ResidualBlock(in_features)]
|
56 |
-
self.model2 = nn.Sequential(*model2)
|
57 |
-
|
58 |
-
# Upsampling
|
59 |
-
model3 = []
|
60 |
-
out_features = in_features//2
|
61 |
-
for _ in range(2):
|
62 |
-
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
63 |
-
norm_layer(out_features),
|
64 |
-
nn.ReLU(inplace=True) ]
|
65 |
-
in_features = out_features
|
66 |
-
out_features = in_features//2
|
67 |
-
self.model3 = nn.Sequential(*model3)
|
68 |
-
|
69 |
-
# Output layer
|
70 |
-
model4 = [ nn.ReflectionPad2d(3),
|
71 |
-
nn.Conv2d(64, output_nc, 7)]
|
72 |
-
if sigmoid:
|
73 |
-
model4 += [nn.Sigmoid()]
|
74 |
-
|
75 |
-
self.model4 = nn.Sequential(*model4)
|
76 |
-
|
77 |
-
def forward(self, x, cond=None):
|
78 |
-
out = self.model0(x)
|
79 |
-
out = self.model1(out)
|
80 |
-
out = self.model2(out)
|
81 |
-
out = self.model3(out)
|
82 |
-
out = self.model4(out)
|
83 |
-
|
84 |
-
return out
|
85 |
-
|
86 |
-
model1 = Generator(3, 1, 3)
|
87 |
-
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu')))
|
88 |
-
model1.eval()
|
89 |
-
|
90 |
-
model2 = Generator(3, 1, 3)
|
91 |
-
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu')))
|
92 |
-
model2.eval()
|
93 |
-
|
94 |
-
def predict(input_img, ver):
|
95 |
-
input_img = Image.open(input_img)
|
96 |
-
transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
|
97 |
-
input_img = transform(input_img)
|
98 |
-
input_img = torch.unsqueeze(input_img, 0)
|
99 |
-
|
100 |
-
drawing = 0
|
101 |
-
with torch.no_grad():
|
102 |
-
if ver == 'Simple Lines':
|
103 |
-
drawing = model2(input_img)[0].detach()
|
104 |
-
else:
|
105 |
-
drawing = model1(input_img)[0].detach()
|
106 |
-
|
107 |
-
drawing = transforms.ToPILImage()(drawing)
|
108 |
-
return drawing
|
109 |
-
|
110 |
-
title="Image to Line Drawings - Complex and Simple Portraits and Landscapes"
|
111 |
-
examples=[
|
112 |
-
['01.jpeg', 'Simple Lines'], ['02.jpeg', 'Simple Lines'], ['03.jpeg', 'Simple Lines'],
|
113 |
-
['07.jpeg', 'Complex Lines'], ['08.jpeg', 'Complex Lines'], ['09.jpeg', 'Complex Lines'],
|
114 |
-
['10.jpeg', 'Simple Lines'], ['11.jpeg', 'Simple Lines'], ['12.jpeg', 'Simple Lines'],
|
115 |
-
['01.jpeg', 'Complex Lines'], ['02.jpeg', 'Complex Lines'], ['03.jpeg', 'Complex Lines'],
|
116 |
-
['04.jpeg', 'Simple Lines'], ['05.jpeg', 'Simple Lines'], ['06.jpeg', 'Simple Lines'],
|
117 |
-
['07.jpeg', 'Simple Lines'], ['08.jpeg', 'Simple Lines'], ['09.jpeg', 'Simple Lines'],
|
118 |
-
['04.jpeg', 'Complex Lines'], ['05.jpeg', 'Complex Lines'], ['06.jpeg', 'Complex Lines'],
|
119 |
-
['10.jpeg', 'Complex Lines'], ['11.jpeg', 'Complex Lines'], ['12.jpeg', 'Complex Lines'],
|
120 |
-
['Upload Wild Horses 2.jpeg', 'Complex Lines']
|
121 |
-
]
|
122 |
-
|
123 |
-
iface = gr.Interface(predict, [gr.inputs.Image(type='filepath'),
|
124 |
-
gr.inputs.Radio(['Complex Lines','Simple Lines'], type="value", default='Simple Lines', label='version')],
|
125 |
-
gr.outputs.Image(type="pil"), title=title,examples=examples)
|
126 |
-
|
127 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|