arxivgpt kim commited on
Commit
4f0a331
·
verified ·
1 Parent(s): 4a6b70e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -12,19 +12,20 @@ def get_caption(image_in):
12
  return results[:4] # Return first 4 images in case the API returns more
13
 
14
  def get_lcm(prompt):
 
15
  client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/")
16
- # Assuming 'client.predict' can return multiple image variations and accepts parameters to specify the number.
17
  results = client.predict(
18
  prompt, # str in 'parameter_5' Textbox component
19
  0.3, # float (numeric value between 0.0 and 5) in 'Guidance' Slider component
20
  8, # float (numeric value between 2 and 10) in 'Steps' Slider component
21
  0, # float (numeric value between 0 and 12013012031030) in 'Seed' Slider component
22
  True, # bool in 'Randomize' Checkbox component
23
- num_images=4, # New parameter to request 4 images (this parameter name might be different)
24
  api_name="/predict"
25
  )
 
26
  print(results)
27
- return results[:4] # Return first 4 images in case the API returns more
28
 
29
 
30
  def infer(image_in):
 
12
  return results[:4] # Return first 4 images in case the API returns more
13
 
14
  def get_lcm(prompt):
15
+ # Make sure the indentation within this function is consistent
16
  client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/")
 
17
  results = client.predict(
18
  prompt, # str in 'parameter_5' Textbox component
19
  0.3, # float (numeric value between 0.0 and 5) in 'Guidance' Slider component
20
  8, # float (numeric value between 2 and 10) in 'Steps' Slider component
21
  0, # float (numeric value between 0 and 12013012031030) in 'Seed' Slider component
22
  True, # bool in 'Randomize' Checkbox component
23
+ # More parameters can be added here if needed
24
  api_name="/predict"
25
  )
26
+ # Process results and possibly call predict multiple times if multiple images are needed
27
  print(results)
28
+ return results # Placeholder for actual return value, consider gathering multiple predictions here
29
 
30
 
31
  def infer(image_in):