Magic-Drawings / app.py
arxivgpt kim
Update app.py
ce2ed82 verified
raw
history blame
2.06 kB
import gradio as gr
from gradio_client import Client
def get_caption(image_in):
# Correct indentation before client initialization
client = Client("https://vikhyatk-moondream1.hf.space/")
# Align the call to 'client.predict' with the line above
# Also, the parameter 'prompt' is not defined in 'get_caption'.
# It should be 'image_in' to match the function signature.
results = client.predict(
image_in, # Use the 'image_in' parameter as input to the model
"Describe the image", # Assuming this is a constant parameter for the model
api_name="/answer_question"
)
# Print and return the results assuming it contains the description
print(results)
return results
def get_lcm(prompt):
client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/")
# Consistent indentation for 'client.predict' call
results = client.predict(
prompt, # 'parameter_5' 텍스트박스 컴포넌트의 문자열
0.3, # 'Guidance' 슬라이더 컴포넌트의 0.0과 5 사이의 부동소수점 값
8, # 'Steps' 슬라이더 컴포넌트의 2와 10 사이의 부동소수점 값
0, # 'Seed' 슬라이더 컴포넌트의 0과 12013012031030 사이의 부동소수점 값
True, # 'Randomize' 체크박스 컴포넌트의 불리언 값
api_name="/predict"
)
# Process results and possibly call predict multiple times if multiple images are needed
print(results)
return results # 실제 API 응답에 기반한 반환 구문
def infer(image_in):
caption = get_caption(image_in)
img_var = get_lcm(caption)
return img_var
# Create an Interface object with proper parameters
interface = gr.Interface(
title="ArXivGPT Image",
description="Image to Image variation, using LCM SDXL & Moondream1",
fn=infer,
inputs=gr.Image(type="filepath", label="Image input"),
outputs=gr.Image(label="Image variation")
)
# Launch the interface
interface.queue(max_size=25).launch()