Magic-Drawings / app.py
fantos's picture
Update app.py
8a9898f verified
raw
history blame
10.2 kB
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
import torch.nn.functional as F
# Force CPU mode for Zero GPU environment
device = torch.device('cpu')
torch.set_num_threads(4) # Optimize CPU performance
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features) ]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
# Residual blocks
model2 = []
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
# Initialize models with error handling and memory optimization
def load_models():
try:
print("Initializing models in CPU mode...")
# Initialize models
model1 = Generator(3, 1, 3)
model2 = Generator(3, 1, 3)
# Load model weights with explicit CPU mapping
model1.load_state_dict(torch.load('model.pth', map_location='cpu'))
model2.load_state_dict(torch.load('model2.pth', map_location='cpu'))
# Set to eval mode and optimize for inference
model1.eval()
model2.eval()
# Enable inference optimizations
torch.set_grad_enabled(False)
print("Models loaded successfully in CPU mode")
return model1, model2
except Exception as e:
error_msg = f"Error loading models: {str(e)}"
print(error_msg)
raise gr.Error("Failed to initialize models. Please check the model files and system configuration.")
# Load models with proper error handling
try:
print("Starting model initialization...")
model1, model2 = load_models()
print("Model initialization completed")
except Exception as e:
print(f"Critical error during model initialization: {str(e)}")
raise gr.Error("Failed to start the application due to model initialization error.")
def apply_style_transfer(img, strength=1.0):
"""Apply artistic style transfer effect"""
img_array = np.array(img)
processed = F.interpolate(
torch.from_numpy(img_array).float().unsqueeze(0),
size=(256, 256),
mode='bilinear',
align_corners=False
)
return processed * strength
def enhance_lines(img, contrast=1.0, brightness=1.0):
"""Enhance line drawing with contrast and brightness adjustments"""
enhanced = np.array(img)
enhanced = enhanced * contrast
enhanced = np.clip(enhanced + brightness, 0, 1)
return Image.fromarray((enhanced * 255).astype(np.uint8))
def predict(input_img, version, line_thickness=1.0, contrast=1.0, brightness=1.0, enable_enhancement=False):
try:
# Open and process input image
original_img = Image.open(input_img)
original_size = original_img.size
# Transform pipeline
transform = transforms.Compose([
transforms.Resize(256, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
input_tensor = transform(original_img).unsqueeze(0).to(device)
# Process through selected model
with torch.no_grad():
if version == 'Simple Lines':
output = model2(input_tensor)
else:
output = model1(input_tensor)
# Apply line thickness adjustment
output = output * line_thickness
# Convert to image
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
# Apply enhancements if enabled
if enable_enhancement:
output_img = enhance_lines(output_img, contrast, brightness)
# Resize to original
output_img = output_img.resize(original_size, Image.BICUBIC)
return output_img
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
# Custom CSS for better UI
custom_css = """
.gradio-container {
font-family: 'Helvetica Neue', Arial, sans-serif;
}
.gr-button {
border-radius: 8px;
background: linear-gradient(45deg, #3498db, #2980b9);
border: none;
color: white;
}
.gr-button:hover {
background: linear-gradient(45deg, #2980b9, #3498db);
transform: translateY(-2px);
transition: all 0.3s ease;
}
.gr-input {
border-radius: 8px;
border: 2px solid #3498db;
}
"""
# Create Gradio interface with enhanced UI
with gr.Blocks(css=custom_css) as iface:
gr.Markdown("# 🎨 Advanced Line Drawing Generator")
gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Upload Image")
version = gr.Radio(
choices=['Complex Lines', 'Simple Lines'],
value='Simple Lines',
label="Drawing Style"
)
with gr.Accordion("Advanced Settings", open=False):
line_thickness = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Line Thickness"
)
enable_enhancement = gr.Checkbox(
label="Enable Enhancement",
value=False
)
with gr.Group(visible=False) as enhancement_controls:
contrast = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Contrast"
)
brightness = gr.Slider(
minimum=0.5,
maximum=1.5,
value=1.0,
step=0.1,
label="Brightness"
)
enable_enhancement.change(
fn=lambda x: gr.Group(visible=x),
inputs=[enable_enhancement],
outputs=[enhancement_controls]
)
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Line Drawing")
with gr.Row():
generate_btn = gr.Button("Generate Drawing", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
# Load example images
example_images = []
for file in os.listdir('.'):
if file.lower().endswith(('.png', '.jpg', '.jpeg')):
example_images.append(file)
if example_images:
gr.Examples(
examples=[[img, "Simple Lines"] for img in example_images],
inputs=[input_image, version],
outputs=output_image,
fn=predict,
cache_examples=True
)
# Set up event handlers
generate_btn.click(
fn=predict,
inputs=[
input_image,
version,
line_thickness,
contrast,
brightness,
enable_enhancement
],
outputs=output_image
)
clear_btn.click(
fn=lambda: (None, "Simple Lines", 1.0, 1.0, 1.0, False),
inputs=[],
outputs=[
input_image,
version,
line_thickness,
contrast,
brightness,
enable_enhancement
]
)
# Launch the interface
iface.launch(
server_name="0.0.0.0", # Required for Hugging Face Spaces
server_port=7860, # Default port for Hugging Face Spaces
share=False, # Disable public URL
debug=False, # Disable debug mode
enable_queue=True # Enable queue for better performance
)