Spaces:
Running
Running
import gradio as gr | |
from gradio_client import Client | |
def get_caption(image_in): | |
client = Client("https://vikhyatk-moondream1.hf.space/") | |
caption = client.predict( | |
image_in, # 'image_in'은 이미지 파일의 경로입니다. | |
"Describe the image", # 'Describe the image'는 모델에 제출되는 문장입니다. | |
api_name="/answer_question" | |
) | |
print(caption) | |
return caption # caption 변수는 이미지 설명 문자열을 담고 있습니다. | |
def get_lcm(prompt): | |
client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/") | |
# Consistent indentation for 'client.predict' call | |
results = client.predict( | |
prompt, # 'parameter_5' 텍스트박스 컴포넌트의 문자열 | |
0.3, # 'Guidance' 슬라이더 컴포넌트의 0.0과 5 사이의 부동소수점 값 | |
8, # 'Steps' 슬라이더 컴포넌트의 2와 10 사이의 부동소수점 값 | |
0, # 'Seed' 슬라이더 컴포넌트의 0과 12013012031030 사이의 부동소수점 값 | |
True, # 'Randomize' 체크박스 컴포넌트의 불리언 값 | |
api_name="/predict" | |
) | |
# Process results and possibly call predict multiple times if multiple images are needed | |
print(results) | |
return results # 실제 API 응답에 기반한 반환 구문 | |
def infer(image_in): | |
caption = get_caption(image_in) | |
# 이 부분은 get_lcm 함수가 올바른 이미지를 생성하고 반환하도록 구현해야 합니다. | |
# img_var = get_lcm(caption) | |
# 예제에서는 단순히 이미지 경로를 반환하도록 생략합니다. | |
return image_in # 실제로는 get_lcm 함수의 결과를 반환해야 합니다. | |
# Create an Interface object with proper parameters | |
interface = gr.Interface( | |
title="ArXivGPT Image", | |
description="Image to Image variation, using LCM SDXL & Moondream1", | |
fn=infer, | |
inputs=gr.Image(type="filepath", label="Image input"), | |
outputs=gr.Image(label="Image variation") | |
) | |
# Launch the interface | |
interface.queue(max_size=25).launch() |