Spaces:
Running
Running
File size: 1,493 Bytes
6d35cbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
from gradio_client import Client
def get_caption(image_in):
client = Client("https://vikhyatk-moondream1.hf.space/")
result = client.predict(
image_in,
"Describe the image",
api_name="/answer_question"
)
caption = result['choices'][0]['text']
return caption
def get_lcm(prompt):
client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/")
images = []
for _ in range(4): # 4개의 이미지 생성
result = client.predict(
prompt, # str in 'parameter_5' Textbox component
0.3, # float (numeric value between 0.0 and 5) in 'Guidance' Slider component
8, # float (numeric value between 2 and 10) in 'Steps' Slider component
0, # float (numeric value between 0 and 12013012031030) in 'Seed' Slider component
True, # bool in 'Randomize' Checkbox component
api_name="/predict"
)
images.append(result[0])
return images
def infer(image_in):
caption = get_caption(image_in)
img_vars = get_lcm(caption)
return caption, img_vars
gr.Interface(
title="ArXivGPT Image",
description=" Image2Image Variation - LCM SDXL & Moondream1 using for image generation",
fn=infer,
inputs=[
gr.Image(type="filepath", label="Image input")
],
outputs=[
gr.Textbox(label="Caption"),
gr.Gallery(label="LCM Image variations")
]
).queue(max_size=25).launch()
|