|
import gradio as gr |
|
import requests |
|
import os |
|
import json |
|
from collections import deque |
|
|
|
|
|
TOKEN = os.getenv("HUGGINGFACE_API_TOKEN") |
|
|
|
|
|
if not TOKEN: |
|
raise ValueError("API token is not set. Please set the HUGGINGFACE_API_TOKEN environment variable.") |
|
|
|
|
|
memory = deque(maxlen=10) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message="AI Assistant Role", |
|
max_tokens=512, |
|
temperature=0.7, |
|
top_p=0.95, |
|
): |
|
|
|
system_prefix = "System: μ
λ ₯μ΄μ μΈμ΄(μμ΄, νκ΅μ΄, μ€κ΅μ΄, μΌλ³Έμ΄ λ±)μ λ°λΌ λμΌν μΈμ΄λ‘ λ΅λ³νλΌ." |
|
full_system_message = f"{system_prefix}{system_message}" |
|
|
|
|
|
memory.append((message, None)) |
|
|
|
messages = [{"role": "system", "content": full_system_message}] |
|
|
|
|
|
for val in memory: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
headers = { |
|
"Authorization": f"Bearer {TOKEN}", |
|
"Content-Type": "application/json" |
|
} |
|
|
|
payload = { |
|
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct", |
|
"max_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"messages": messages |
|
} |
|
|
|
response = requests.post("https://api-inference.huggingface.co/v1/chat/completions", headers=headers, json=payload, stream=True) |
|
|
|
response_text = "" |
|
for chunk in response.iter_content(chunk_size=None): |
|
if chunk: |
|
chunk_data = chunk.decode('utf-8') |
|
response_json = json.loads(chunk_data) |
|
|
|
if "choices" in response_json: |
|
content = response_json["choices"][0]["message"]["content"] |
|
response_text = content |
|
|
|
memory[-1] = (message, response_text) |
|
yield content |
|
|
|
theme = "Nymbo/Nymbo_Theme" |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
theme=theme, |
|
additional_inputs=[ |
|
gr.Textbox(value="AI Assistant Role", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(concurrency_limit=20).launch(max_threads=20) |
|
|