ford442 commited on
Commit
6f3f80c
·
verified ·
1 Parent(s): d1e3d66

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -66,10 +66,9 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
66
 
67
  request_log = []
68
 
69
- clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(device)
70
  clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
71
 
72
-
73
  def compute_clip_embedding(text=None, image=None):
74
  """
75
  Compute CLIP embedding for a given text or image.
@@ -218,7 +217,7 @@ vae = load_vae(vae_dir)
218
  unet = load_unet(unet_dir)
219
  scheduler = load_scheduler(scheduler_dir)
220
  patchifier = SymmetricPatchifier(patch_size=1)
221
- text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(device)
222
  tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
223
 
224
  pipeline = XoraVideoPipeline(
@@ -228,7 +227,7 @@ pipeline = XoraVideoPipeline(
228
  tokenizer=tokenizer,
229
  scheduler=scheduler,
230
  vae=vae,
231
- ).to(device)
232
 
233
  @spaces.GPU(duration=90) # Dynamic duration
234
  def generate_video_from_text_90(
 
66
 
67
  request_log = []
68
 
69
+ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
70
  clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
71
 
 
72
  def compute_clip_embedding(text=None, image=None):
73
  """
74
  Compute CLIP embedding for a given text or image.
 
217
  unet = load_unet(unet_dir)
218
  scheduler = load_scheduler(scheduler_dir)
219
  patchifier = SymmetricPatchifier(patch_size=1)
220
+ text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
221
  tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
222
 
223
  pipeline = XoraVideoPipeline(
 
227
  tokenizer=tokenizer,
228
  scheduler=scheduler,
229
  vae=vae,
230
+ ).to(torch.device("cuda:0"))
231
 
232
  @spaces.GPU(duration=90) # Dynamic duration
233
  def generate_video_from_text_90(