Delete uhdimage.cod
Browse files- uhdimage.cod +0 -271
uhdimage.cod
DELETED
|
@@ -1,271 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import yaml
|
| 3 |
-
import torch
|
| 4 |
-
import sys
|
| 5 |
-
sys.path.append(os.path.abspath('./'))
|
| 6 |
-
from inference.utils import *
|
| 7 |
-
from train import WurstCoreB
|
| 8 |
-
from gdf import DDPMSampler
|
| 9 |
-
from train import WurstCore_t2i as WurstCoreC
|
| 10 |
-
import numpy as np
|
| 11 |
-
import random
|
| 12 |
-
import argparse
|
| 13 |
-
import gradio as gr
|
| 14 |
-
import spaces
|
| 15 |
-
from huggingface_hub import hf_hub_url
|
| 16 |
-
import subprocess
|
| 17 |
-
from huggingface_hub import hf_hub_download
|
| 18 |
-
from transformers import pipeline
|
| 19 |
-
|
| 20 |
-
# Initialize the translation pipeline
|
| 21 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
| 22 |
-
|
| 23 |
-
def parse_args():
|
| 24 |
-
parser = argparse.ArgumentParser()
|
| 25 |
-
parser.add_argument('--height', type=int, default=2560, help='image height')
|
| 26 |
-
parser.add_argument('--width', type=int, default=5120, help='image width')
|
| 27 |
-
parser.add_argument('--seed', type=int, default=123, help='random seed')
|
| 28 |
-
parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
|
| 29 |
-
parser.add_argument('--config_c', type=str,
|
| 30 |
-
default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
|
| 31 |
-
parser.add_argument('--config_b', type=str,
|
| 32 |
-
default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
|
| 33 |
-
parser.add_argument('--prompt', type=str,
|
| 34 |
-
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
|
| 35 |
-
parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
|
| 36 |
-
parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
|
| 37 |
-
parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
|
| 38 |
-
parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
|
| 39 |
-
args = parser.parse_args()
|
| 40 |
-
return args
|
| 41 |
-
|
| 42 |
-
def clear_image():
|
| 43 |
-
return None
|
| 44 |
-
|
| 45 |
-
def load_message(height, width, seed, prompt, args, stage_a_tiled):
|
| 46 |
-
args.height = height
|
| 47 |
-
args.width = width
|
| 48 |
-
args.seed = seed
|
| 49 |
-
args.prompt = prompt + ' rich detail, 4k, high quality'
|
| 50 |
-
args.stage_a_tiled = stage_a_tiled
|
| 51 |
-
return args
|
| 52 |
-
|
| 53 |
-
def is_korean(text):
|
| 54 |
-
return any('\uac00' <= char <= '\ud7a3' for char in text)
|
| 55 |
-
|
| 56 |
-
def translate_if_korean(text):
|
| 57 |
-
if is_korean(text):
|
| 58 |
-
translated = translator(text, max_length=512)[0]['translation_text']
|
| 59 |
-
print(f"Translated from Korean: {text} -> {translated}")
|
| 60 |
-
return translated
|
| 61 |
-
return text
|
| 62 |
-
|
| 63 |
-
@spaces.GPU(duration=120)
|
| 64 |
-
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
|
| 65 |
-
global args
|
| 66 |
-
|
| 67 |
-
# Translate the prompt if it's in Korean
|
| 68 |
-
prompt = translate_if_korean(prompt)
|
| 69 |
-
|
| 70 |
-
args = load_message(height, width, seed, prompt, args, stage_a_tiled)
|
| 71 |
-
torch.manual_seed(args.seed)
|
| 72 |
-
random.seed(args.seed)
|
| 73 |
-
np.random.seed(args.seed)
|
| 74 |
-
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
|
| 75 |
-
|
| 76 |
-
captions = [args.prompt] * args.num_image
|
| 77 |
-
height, width = args.height, args.width
|
| 78 |
-
batch_size = 1
|
| 79 |
-
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
|
| 80 |
-
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
| 81 |
-
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
|
| 82 |
-
|
| 83 |
-
# Stage C Parameters
|
| 84 |
-
extras.sampling_configs['cfg'] = 4
|
| 85 |
-
extras.sampling_configs['shift'] = 1
|
| 86 |
-
extras.sampling_configs['timesteps'] = 20
|
| 87 |
-
extras.sampling_configs['t_start'] = 1.0
|
| 88 |
-
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
|
| 89 |
-
|
| 90 |
-
# Stage B Parameters
|
| 91 |
-
extras_b.sampling_configs['cfg'] = 1.1
|
| 92 |
-
extras_b.sampling_configs['shift'] = 1
|
| 93 |
-
extras_b.sampling_configs['timesteps'] = 10
|
| 94 |
-
extras_b.sampling_configs['t_start'] = 1.0
|
| 95 |
-
|
| 96 |
-
for _, caption in enumerate(captions):
|
| 97 |
-
batch = {'captions': [caption] * batch_size}
|
| 98 |
-
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
| 99 |
-
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
| 100 |
-
|
| 101 |
-
with torch.no_grad():
|
| 102 |
-
models.generator.cuda()
|
| 103 |
-
print('STAGE C GENERATION***************************')
|
| 104 |
-
with torch.cuda.amp.autocast(dtype=dtype):
|
| 105 |
-
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
|
| 106 |
-
|
| 107 |
-
models.generator.cpu()
|
| 108 |
-
torch.cuda.empty_cache()
|
| 109 |
-
|
| 110 |
-
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
| 111 |
-
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
| 112 |
-
conditions_b['effnet'] = sampled_c
|
| 113 |
-
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
| 114 |
-
print('STAGE B + A DECODING***************************')
|
| 115 |
-
|
| 116 |
-
with torch.cuda.amp.autocast(dtype=dtype):
|
| 117 |
-
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
|
| 118 |
-
|
| 119 |
-
torch.cuda.empty_cache()
|
| 120 |
-
imgs = show_images(sampled)
|
| 121 |
-
|
| 122 |
-
return imgs[0]
|
| 123 |
-
|
| 124 |
-
css = """
|
| 125 |
-
footer {
|
| 126 |
-
visibility: hidden;
|
| 127 |
-
}
|
| 128 |
-
"""
|
| 129 |
-
|
| 130 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
| 131 |
-
with gr.Column(elem_id="col-container"):
|
| 132 |
-
gr.Markdown("<h1><center>초고해상도 UHD 이미지(최대 5120 X 4096 픽셀) 생성</center></h1>")
|
| 133 |
-
|
| 134 |
-
with gr.Row():
|
| 135 |
-
prompt = gr.Textbox(
|
| 136 |
-
label="Text Prompt (한글 또는 영어로 입력하세요)",
|
| 137 |
-
show_label=False,
|
| 138 |
-
max_lines=1,
|
| 139 |
-
placeholder="프롬프트를 입력하세요 (Enter your prompt in Korean or English)",
|
| 140 |
-
container=False
|
| 141 |
-
)
|
| 142 |
-
polish_button = gr.Button("제출! (Submit!)", scale=0)
|
| 143 |
-
|
| 144 |
-
output_img = gr.Image(label="Output Image", show_label=False)
|
| 145 |
-
|
| 146 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 147 |
-
seed = gr.Number(
|
| 148 |
-
label="Random Seed",
|
| 149 |
-
value=123,
|
| 150 |
-
step=1,
|
| 151 |
-
minimum=0,
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
with gr.Row():
|
| 155 |
-
width = gr.Slider(
|
| 156 |
-
label="Width",
|
| 157 |
-
minimum=1536,
|
| 158 |
-
maximum=5120,
|
| 159 |
-
step=32,
|
| 160 |
-
value=4096
|
| 161 |
-
)
|
| 162 |
-
|
| 163 |
-
height = gr.Slider(
|
| 164 |
-
label="Height",
|
| 165 |
-
minimum=1536,
|
| 166 |
-
maximum=4096,
|
| 167 |
-
step=32,
|
| 168 |
-
value=2304
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
with gr.Row():
|
| 172 |
-
cfg = gr.Slider(
|
| 173 |
-
label="CFG",
|
| 174 |
-
minimum=3,
|
| 175 |
-
maximum=10,
|
| 176 |
-
step=0.1,
|
| 177 |
-
value=4
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
timesteps = gr.Slider(
|
| 181 |
-
label="Timesteps",
|
| 182 |
-
minimum=10,
|
| 183 |
-
maximum=50,
|
| 184 |
-
step=1,
|
| 185 |
-
value=20
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
-
stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False)
|
| 189 |
-
|
| 190 |
-
clear_button = gr.Button("Clear!")
|
| 191 |
-
|
| 192 |
-
gr.Examples(
|
| 193 |
-
examples=[
|
| 194 |
-
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
|
| 195 |
-
"눈 덮인 산맥의 장엄한 전경, 푸른 하늘을 배경으로 한 고요한 호수가 있는 모습",
|
| 196 |
-
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
|
| 197 |
-
"스웨터를 입은 악어",
|
| 198 |
-
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
|
| 199 |
-
"골든 리트리버 강아지가 푸른 잔디밭에서 빨간 공을 쫓는 귀여운 모습",
|
| 200 |
-
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
|
| 201 |
-
"캐나다 밴프 국립공원의 아름다운 풍경, 청록색 호수와 눈 덮인 산들, 울창한 소나무 숲이 어우러진 모습",
|
| 202 |
-
"귀여운 시츄가 욕조에서 목욕하는 모습, 거품에 둘러싸인 채 살짝 젖은 모습으로 카메라를 바라보고 있음",
|
| 203 |
-
],
|
| 204 |
-
inputs=[prompt],
|
| 205 |
-
outputs=[output_img],
|
| 206 |
-
examples_per_page=5
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
|
| 210 |
-
polish_button.click(clear_image, inputs=[], outputs=output_img)
|
| 211 |
-
|
| 212 |
-
def download_with_wget(url, save_path):
|
| 213 |
-
try:
|
| 214 |
-
subprocess.run(['wget', url, '-O', save_path], check=True)
|
| 215 |
-
print(f"Downloaded to {save_path}")
|
| 216 |
-
except subprocess.CalledProcessError as e:
|
| 217 |
-
print(f"Error downloading file: {e}")
|
| 218 |
-
|
| 219 |
-
def download_model():
|
| 220 |
-
urls = [
|
| 221 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
|
| 222 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
|
| 223 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
|
| 224 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
|
| 225 |
-
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
|
| 226 |
-
]
|
| 227 |
-
for file_url in urls:
|
| 228 |
-
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
|
| 229 |
-
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
|
| 230 |
-
|
| 231 |
-
if __name__ == "__main__":
|
| 232 |
-
args = parse_args()
|
| 233 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 234 |
-
download_model()
|
| 235 |
-
config_file = args.config_c
|
| 236 |
-
with open(config_file, "r", encoding="utf-8") as file:
|
| 237 |
-
loaded_config = yaml.safe_load(file)
|
| 238 |
-
|
| 239 |
-
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
|
| 240 |
-
|
| 241 |
-
# SETUP STAGE B
|
| 242 |
-
config_file_b = args.config_b
|
| 243 |
-
with open(config_file_b, "r", encoding="utf-8") as file:
|
| 244 |
-
config_file_b = yaml.safe_load(file)
|
| 245 |
-
|
| 246 |
-
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
|
| 247 |
-
|
| 248 |
-
extras = core.setup_extras_pre()
|
| 249 |
-
models = core.setup_models(extras)
|
| 250 |
-
models.generator.eval().requires_grad_(False)
|
| 251 |
-
print("STAGE C READY")
|
| 252 |
-
|
| 253 |
-
extras_b = core_b.setup_extras_pre()
|
| 254 |
-
models_b = core_b.setup_models(extras_b, skip_clip=True)
|
| 255 |
-
models_b = WurstCoreB.Models(
|
| 256 |
-
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
|
| 257 |
-
)
|
| 258 |
-
models_b.generator.bfloat16().eval().requires_grad_(False)
|
| 259 |
-
print("STAGE B READY")
|
| 260 |
-
|
| 261 |
-
pretrained_path = args.pretrained_path
|
| 262 |
-
sdd = torch.load(pretrained_path, map_location='cpu')
|
| 263 |
-
collect_sd = {}
|
| 264 |
-
for k, v in sdd.items():
|
| 265 |
-
collect_sd[k[7:]] = v
|
| 266 |
-
|
| 267 |
-
models.train_norm.load_state_dict(collect_sd)
|
| 268 |
-
models.generator.eval()
|
| 269 |
-
models.train_norm.eval()
|
| 270 |
-
|
| 271 |
-
demo.launch(debug=True, share=True, auth=("gini","pick"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|