Create fashion.cod
Browse files- fashion.cod +273 -0
fashion.cod
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import sys
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image, ImageOps
|
| 9 |
+
|
| 10 |
+
from utils_ootd import get_mask_location
|
| 11 |
+
|
| 12 |
+
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
|
| 13 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
| 14 |
+
|
| 15 |
+
from preprocess.openpose.run_openpose import OpenPose
|
| 16 |
+
from preprocess.humanparsing.run_parsing import Parsing
|
| 17 |
+
from ootd.inference_ootd_hd import OOTDiffusionHD
|
| 18 |
+
from ootd.inference_ootd_dc import OOTDiffusionDC
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
openpose_model_hd = OpenPose(0)
|
| 22 |
+
parsing_model_hd = Parsing(0)
|
| 23 |
+
ootd_model_hd = OOTDiffusionHD(0)
|
| 24 |
+
|
| 25 |
+
openpose_model_dc = OpenPose(1)
|
| 26 |
+
parsing_model_dc = Parsing(1)
|
| 27 |
+
ootd_model_dc = OOTDiffusionDC(1)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
category_dict = ['upperbody', 'lowerbody', 'dress']
|
| 31 |
+
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
example_path = os.path.join(os.path.dirname(__file__), 'examples')
|
| 35 |
+
model_hd = os.path.join(example_path, 'model/model_1.png')
|
| 36 |
+
garment_hd = os.path.join(example_path, 'garment/03244_00.jpg')
|
| 37 |
+
model_dc = os.path.join(example_path, 'model/model_8.png')
|
| 38 |
+
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@spaces.GPU
|
| 42 |
+
def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed):
|
| 43 |
+
model_type = 'hd'
|
| 44 |
+
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
|
| 45 |
+
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
|
| 48 |
+
ootd_model_hd.pipe.to('cuda')
|
| 49 |
+
ootd_model_hd.image_encoder.to('cuda')
|
| 50 |
+
ootd_model_hd.text_encoder.to('cuda')
|
| 51 |
+
|
| 52 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
| 53 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
| 54 |
+
keypoints = openpose_model_hd(vton_img.resize((384, 512)))
|
| 55 |
+
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))
|
| 56 |
+
|
| 57 |
+
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
| 58 |
+
mask = mask.resize((768, 1024), Image.NEAREST)
|
| 59 |
+
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
|
| 60 |
+
|
| 61 |
+
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
|
| 62 |
+
|
| 63 |
+
images = ootd_model_hd(
|
| 64 |
+
model_type=model_type,
|
| 65 |
+
category=category_dict[category],
|
| 66 |
+
image_garm=garm_img,
|
| 67 |
+
image_vton=masked_vton_img,
|
| 68 |
+
mask=mask,
|
| 69 |
+
image_ori=vton_img,
|
| 70 |
+
num_samples=n_samples,
|
| 71 |
+
num_steps=n_steps,
|
| 72 |
+
image_scale=image_scale,
|
| 73 |
+
seed=seed,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
return images
|
| 77 |
+
|
| 78 |
+
@spaces.GPU
|
| 79 |
+
def process_dc(vton_img, garm_img, category, n_samples, n_steps, image_scale, seed):
|
| 80 |
+
model_type = 'dc'
|
| 81 |
+
if category == 'Upper-body':
|
| 82 |
+
category = 0
|
| 83 |
+
elif category == 'Lower-body':
|
| 84 |
+
category = 1
|
| 85 |
+
else:
|
| 86 |
+
category =2
|
| 87 |
+
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
|
| 90 |
+
ootd_model_dc.pipe.to('cuda')
|
| 91 |
+
ootd_model_dc.image_encoder.to('cuda')
|
| 92 |
+
ootd_model_dc.text_encoder.to('cuda')
|
| 93 |
+
|
| 94 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
| 95 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
| 96 |
+
keypoints = openpose_model_dc(vton_img.resize((384, 512)))
|
| 97 |
+
model_parse, _ = parsing_model_dc(vton_img.resize((384, 512)))
|
| 98 |
+
|
| 99 |
+
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
| 100 |
+
mask = mask.resize((768, 1024), Image.NEAREST)
|
| 101 |
+
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
|
| 102 |
+
|
| 103 |
+
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
|
| 104 |
+
|
| 105 |
+
images = ootd_model_dc(
|
| 106 |
+
model_type=model_type,
|
| 107 |
+
category=category_dict[category],
|
| 108 |
+
image_garm=garm_img,
|
| 109 |
+
image_vton=masked_vton_img,
|
| 110 |
+
mask=mask,
|
| 111 |
+
image_ori=vton_img,
|
| 112 |
+
num_samples=n_samples,
|
| 113 |
+
num_steps=n_steps,
|
| 114 |
+
image_scale=image_scale,
|
| 115 |
+
seed=seed,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
return images
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
block = gr.Blocks(theme="Nymbo/Nymbo_Theme").queue()
|
| 122 |
+
with block:
|
| 123 |
+
|
| 124 |
+
with gr.Row():
|
| 125 |
+
gr.Markdown("## Half-body")
|
| 126 |
+
with gr.Row():
|
| 127 |
+
gr.Markdown("***Support upper-body garments***")
|
| 128 |
+
with gr.Row():
|
| 129 |
+
with gr.Column():
|
| 130 |
+
vton_img = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_hd)
|
| 131 |
+
example = gr.Examples(
|
| 132 |
+
inputs=vton_img,
|
| 133 |
+
examples_per_page=14,
|
| 134 |
+
examples=[
|
| 135 |
+
os.path.join(example_path, 'model/model_1.png'),
|
| 136 |
+
os.path.join(example_path, 'model/model_2.png'),
|
| 137 |
+
os.path.join(example_path, 'model/model_3.png'),
|
| 138 |
+
os.path.join(example_path, 'model/model_4.png'),
|
| 139 |
+
os.path.join(example_path, 'model/model_5.png'),
|
| 140 |
+
os.path.join(example_path, 'model/model_6.png'),
|
| 141 |
+
os.path.join(example_path, 'model/model_7.png'),
|
| 142 |
+
os.path.join(example_path, 'model/01008_00.jpg'),
|
| 143 |
+
os.path.join(example_path, 'model/07966_00.jpg'),
|
| 144 |
+
os.path.join(example_path, 'model/05997_00.jpg'),
|
| 145 |
+
os.path.join(example_path, 'model/02849_00.jpg'),
|
| 146 |
+
os.path.join(example_path, 'model/14627_00.jpg'),
|
| 147 |
+
os.path.join(example_path, 'model/09597_00.jpg'),
|
| 148 |
+
os.path.join(example_path, 'model/01861_00.jpg'),
|
| 149 |
+
])
|
| 150 |
+
with gr.Column():
|
| 151 |
+
garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_hd)
|
| 152 |
+
example = gr.Examples(
|
| 153 |
+
inputs=garm_img,
|
| 154 |
+
examples_per_page=14,
|
| 155 |
+
examples=[
|
| 156 |
+
os.path.join(example_path, 'garment/03244_00.jpg'),
|
| 157 |
+
os.path.join(example_path, 'garment/00126_00.jpg'),
|
| 158 |
+
os.path.join(example_path, 'garment/03032_00.jpg'),
|
| 159 |
+
os.path.join(example_path, 'garment/06123_00.jpg'),
|
| 160 |
+
os.path.join(example_path, 'garment/02305_00.jpg'),
|
| 161 |
+
os.path.join(example_path, 'garment/00055_00.jpg'),
|
| 162 |
+
os.path.join(example_path, 'garment/00470_00.jpg'),
|
| 163 |
+
os.path.join(example_path, 'garment/02015_00.jpg'),
|
| 164 |
+
os.path.join(example_path, 'garment/10297_00.jpg'),
|
| 165 |
+
os.path.join(example_path, 'garment/07382_00.jpg'),
|
| 166 |
+
os.path.join(example_path, 'garment/07764_00.jpg'),
|
| 167 |
+
os.path.join(example_path, 'garment/00151_00.jpg'),
|
| 168 |
+
os.path.join(example_path, 'garment/12562_00.jpg'),
|
| 169 |
+
os.path.join(example_path, 'garment/04825_00.jpg'),
|
| 170 |
+
])
|
| 171 |
+
with gr.Column():
|
| 172 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
|
| 173 |
+
with gr.Column():
|
| 174 |
+
run_button = gr.Button(value="Run")
|
| 175 |
+
n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
|
| 176 |
+
n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
|
| 177 |
+
# scale = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1)
|
| 178 |
+
image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
|
| 179 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
|
| 180 |
+
|
| 181 |
+
ips = [vton_img, garm_img, n_samples, n_steps, image_scale, seed]
|
| 182 |
+
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
with gr.Row():
|
| 186 |
+
gr.Markdown("## Full-body")
|
| 187 |
+
with gr.Row():
|
| 188 |
+
gr.Markdown("***Support upper-body/lower-body/dresses; garment category must be paired!!!***")
|
| 189 |
+
with gr.Row():
|
| 190 |
+
with gr.Column():
|
| 191 |
+
vton_img_dc = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_dc)
|
| 192 |
+
example = gr.Examples(
|
| 193 |
+
label="Examples (upper-body/lower-body)",
|
| 194 |
+
inputs=vton_img_dc,
|
| 195 |
+
examples_per_page=7,
|
| 196 |
+
examples=[
|
| 197 |
+
os.path.join(example_path, 'model/model_8.png'),
|
| 198 |
+
os.path.join(example_path, 'model/049447_0.jpg'),
|
| 199 |
+
os.path.join(example_path, 'model/049713_0.jpg'),
|
| 200 |
+
os.path.join(example_path, 'model/051482_0.jpg'),
|
| 201 |
+
os.path.join(example_path, 'model/051918_0.jpg'),
|
| 202 |
+
os.path.join(example_path, 'model/051962_0.jpg'),
|
| 203 |
+
os.path.join(example_path, 'model/049205_0.jpg'),
|
| 204 |
+
])
|
| 205 |
+
example = gr.Examples(
|
| 206 |
+
label="Examples (dress)",
|
| 207 |
+
inputs=vton_img_dc,
|
| 208 |
+
examples_per_page=7,
|
| 209 |
+
examples=[
|
| 210 |
+
os.path.join(example_path, 'model/model_9.png'),
|
| 211 |
+
os.path.join(example_path, 'model/052767_0.jpg'),
|
| 212 |
+
os.path.join(example_path, 'model/052472_0.jpg'),
|
| 213 |
+
os.path.join(example_path, 'model/053514_0.jpg'),
|
| 214 |
+
os.path.join(example_path, 'model/053228_0.jpg'),
|
| 215 |
+
os.path.join(example_path, 'model/052964_0.jpg'),
|
| 216 |
+
os.path.join(example_path, 'model/053700_0.jpg'),
|
| 217 |
+
])
|
| 218 |
+
with gr.Column():
|
| 219 |
+
garm_img_dc = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_dc)
|
| 220 |
+
category_dc = gr.Dropdown(label="Garment category (important option!!!)", choices=["Upper-body", "Lower-body", "Dress"], value="Upper-body")
|
| 221 |
+
example = gr.Examples(
|
| 222 |
+
label="Examples (upper-body)",
|
| 223 |
+
inputs=garm_img_dc,
|
| 224 |
+
examples_per_page=7,
|
| 225 |
+
examples=[
|
| 226 |
+
os.path.join(example_path, 'garment/048554_1.jpg'),
|
| 227 |
+
os.path.join(example_path, 'garment/049920_1.jpg'),
|
| 228 |
+
os.path.join(example_path, 'garment/049965_1.jpg'),
|
| 229 |
+
os.path.join(example_path, 'garment/049949_1.jpg'),
|
| 230 |
+
os.path.join(example_path, 'garment/050181_1.jpg'),
|
| 231 |
+
os.path.join(example_path, 'garment/049805_1.jpg'),
|
| 232 |
+
os.path.join(example_path, 'garment/050105_1.jpg'),
|
| 233 |
+
])
|
| 234 |
+
example = gr.Examples(
|
| 235 |
+
label="Examples (lower-body)",
|
| 236 |
+
inputs=garm_img_dc,
|
| 237 |
+
examples_per_page=7,
|
| 238 |
+
examples=[
|
| 239 |
+
os.path.join(example_path, 'garment/051827_1.jpg'),
|
| 240 |
+
os.path.join(example_path, 'garment/051946_1.jpg'),
|
| 241 |
+
os.path.join(example_path, 'garment/051473_1.jpg'),
|
| 242 |
+
os.path.join(example_path, 'garment/051515_1.jpg'),
|
| 243 |
+
os.path.join(example_path, 'garment/051517_1.jpg'),
|
| 244 |
+
os.path.join(example_path, 'garment/051988_1.jpg'),
|
| 245 |
+
os.path.join(example_path, 'garment/051412_1.jpg'),
|
| 246 |
+
])
|
| 247 |
+
example = gr.Examples(
|
| 248 |
+
label="Examples (dress)",
|
| 249 |
+
inputs=garm_img_dc,
|
| 250 |
+
examples_per_page=7,
|
| 251 |
+
examples=[
|
| 252 |
+
os.path.join(example_path, 'garment/053290_1.jpg'),
|
| 253 |
+
os.path.join(example_path, 'garment/053744_1.jpg'),
|
| 254 |
+
os.path.join(example_path, 'garment/053742_1.jpg'),
|
| 255 |
+
os.path.join(example_path, 'garment/053786_1.jpg'),
|
| 256 |
+
os.path.join(example_path, 'garment/053790_1.jpg'),
|
| 257 |
+
os.path.join(example_path, 'garment/053319_1.jpg'),
|
| 258 |
+
os.path.join(example_path, 'garment/052234_1.jpg'),
|
| 259 |
+
])
|
| 260 |
+
with gr.Column():
|
| 261 |
+
result_gallery_dc = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
|
| 262 |
+
with gr.Column():
|
| 263 |
+
run_button_dc = gr.Button(value="Run")
|
| 264 |
+
n_samples_dc = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
|
| 265 |
+
n_steps_dc = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
|
| 266 |
+
# scale_dc = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1)
|
| 267 |
+
image_scale_dc = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
|
| 268 |
+
seed_dc = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
|
| 269 |
+
|
| 270 |
+
ips_dc = [vton_img_dc, garm_img_dc, category_dc, n_samples_dc, n_steps_dc, image_scale_dc, seed_dc]
|
| 271 |
+
run_button_dc.click(fn=process_dc, inputs=ips_dc, outputs=[result_gallery_dc])
|
| 272 |
+
|
| 273 |
+
block.launch()
|