Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,43 +1,40 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
-
|
| 5 |
-
from PIL import Image
|
| 6 |
from transparent_background import Remover
|
| 7 |
|
| 8 |
-
remover = Remover(mode='fast')
|
| 9 |
-
|
| 10 |
-
#def doo(image):
|
| 11 |
-
#img = Image.fromarray(image).convert('RGB') # read image
|
| 12 |
-
#out = remover.process(img) # default setting - transparent background
|
| 13 |
-
|
| 14 |
-
#out.save('output.png') # save result
|
| 15 |
-
#return out
|
| 16 |
|
| 17 |
def doo(video):
|
| 18 |
-
cap = cv2.VideoCapture(video)
|
| 19 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
while cap.isOpened():
|
| 24 |
-
ret, frame = cap.read()
|
| 25 |
-
|
| 26 |
if ret is False:
|
| 27 |
break
|
| 28 |
-
|
| 29 |
-
frame
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
cap.release()
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
iface = gr.Interface(fn=doo, inputs="video", outputs="video")
|
| 43 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
| 4 |
from transparent_background import Remover
|
| 5 |
|
| 6 |
+
remover = Remover(mode='fast') # Custom setting
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def doo(video):
|
| 9 |
+
cap = cv2.VideoCapture(video) # Video reader for input
|
| 10 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 11 |
+
|
| 12 |
+
processed_frames = [] # List to store processed frames
|
| 13 |
+
|
| 14 |
while cap.isOpened():
|
| 15 |
+
ret, frame = cap.read() # Read video
|
| 16 |
+
|
| 17 |
if ret is False:
|
| 18 |
break
|
| 19 |
+
|
| 20 |
+
# Assuming frame is a NumPy array (e.g., shape: (height, width, 3))
|
| 21 |
+
# Perform background removal using the model
|
| 22 |
+
# Replace this placeholder code with actual model inference
|
| 23 |
+
|
| 24 |
+
# Example: Apply a simple threshold to create a binary mask
|
| 25 |
+
gray_frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
| 26 |
+
_, mask = cv2.threshold(gray_frame, 200, 255, cv2.THRESH_BINARY)
|
| 27 |
+
|
| 28 |
+
# Create a masked frame
|
| 29 |
+
masked_frame = cv2.bitwise_and(frame, frame, mask=mask)
|
| 30 |
+
|
| 31 |
+
# Append the processed frame to the output
|
| 32 |
+
processed_frames.append(masked_frame)
|
| 33 |
+
|
| 34 |
cap.release()
|
| 35 |
+
|
| 36 |
+
# Return the list of processed frames
|
| 37 |
+
return processed_frames
|
| 38 |
|
| 39 |
iface = gr.Interface(fn=doo, inputs="video", outputs="video")
|
| 40 |
+
iface.launch()
|