File size: 9,337 Bytes
f4fac26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pyarrow.parquet as pq \n",
    "from transformers import AutoTokenizer, PreTrainedTokenizerFast\n",
    "from rich import progress"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 训练集数据训练tokenizer,小于16G内存的机器容易OOM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pq_file = '../data/my_dataset.shuffle.parquet'\n",
    "pf = pq.read_table(pq_file)\n",
    "\n",
    "def get_training_corpus():\n",
    "    buffer = []\n",
    "    for prompt, response in progress.track(zip(pf['prompt'], pf['response']), total=pf.num_rows):\n",
    "\n",
    "        buffer.append(\n",
    "            f\"{prompt.as_py()}\\n{response.as_py()}\"\n",
    "        )\n",
    "\n",
    "        if len(buffer) >= 1000:\n",
    "             yield buffer\n",
    "             buffer = []\n",
    "\n",
    "    if buffer: yield buffer\n",
    "iter_training_corpus = get_training_corpus()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## step 1: 加载T5模型自带的tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "old_tokenizer = AutoTokenizer.from_pretrained('t5-base')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##  step 2: 加载Wiki中文语料,1.6GB\n",
    "备注: 全量预训练语料文本大小约7GB"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "lines = []\n",
    "with open('../data/raw_data/wiki.simple.txt', 'r', encoding='utf-8') as f:\n",
    "    lines = f.readlines()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "len(lines)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## step 3 定义一个语料的迭代生成器\n",
    "一个文本块(段落)的最小长度为2048,迭代一次返回1000个文本块"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_training_corpus():\n",
    "    buffer = []\n",
    "    i = 0 \n",
    "    txt = []\n",
    "    len_cnt = 0\n",
    "    for line in progress.track(lines):\n",
    "        \n",
    "        len_cnt += len(line)\n",
    "        txt.append(line)\n",
    "        if len_cnt >= 2048:\n",
    "            buffer.append(\n",
    "                ''.join(txt)\n",
    "            )\n",
    "            txt = []\n",
    "            len_cnt = 0\n",
    "      \n",
    "        if len(buffer) >= 1000:\n",
    "             yield buffer\n",
    "             buffer = []\n",
    "             i += 1\n",
    "\n",
    "    #  yield last  buffer\n",
    "    if len(buffer) > 0:\n",
    "        yield buffer\n",
    "\n",
    "iter_training_corpus = get_training_corpus()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for i in get_training_corpus():\n",
    "    print(len(i))\n",
    "    print([len(t) for t in i][0:20])\n",
    "    break\n",
    "## 1000\n",
    "## [2104, 2053, 2176, 2224, 2172, 2068, 2054, 2258, 2058, 2085, 2142, 2274, 2184, 2246, 2144, 2223, 2075, 2058, 2164,  2178]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## step 4: 训练tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer = old_tokenizer.train_new_from_iterator(iter_training_corpus, vocab_size=40960)\n",
    "\n",
    "# cpu计算密集型任务 13600K大概需要1个小时,最大内存占用20G"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## step 5: 保存训练好的tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer.save_pretrained('../model_save/my_tokenizer_wiki')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 补充内容: 自定义模型、及特殊字符训练"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import PreTrainedTokenizerFast\n",
    "from tokenizers.pre_tokenizers import Whitespace, Punctuation, Digits, ByteLevel, Metaspace\n",
    "from tokenizers.normalizers import NFKC\n",
    "from tokenizers import Tokenizer, decoders\n",
    "from tokenizers.models import BPE\n",
    "import tokenizers"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 字符级别的 BPE toeknizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = BPE(unk_token=\"[UNK]\")\n",
    "tokenizer = Tokenizer(model)\n",
    "\n",
    "# 用兼容等价分解合并对utf编码进行等价组合,比如全角A转换为半角A\n",
    "tokenizer.normalizer = tokenizers.normalizers.Sequence([NFKC()])\n",
    "\n",
    "# 标点符号,数字,及Metaspace预分割(否则decode出来没有空格)\n",
    "tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.Sequence(\n",
    "    [Punctuation(), Digits(individual_digits=True), Metaspace()])\n",
    "\n",
    "tokenizer.add_special_tokens([\"[PAD]\",\"[EOS]\",\"[SEP]\",\"[BOS]\", \"[CLS]\", \"[MASK]\", \"[UNK]\"])\n",
    "tokenizer.decoder = decoders.Metaspace()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 字节级别(ByteLevel) BPE toeknizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# byte BPE n不需要unk_token\n",
    "model = BPE() \n",
    "tokenizer = Tokenizer(model)\n",
    "\n",
    "tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.ByteLevel(add_prefix_space=False)\n",
    "\n",
    "tokenizer.add_special_tokens([\"[PAD]\",\"[EOS]\",\"[SEP]\",\"[BOS]\", \"[CLS]\", \"[MASK]\", \"[UNK]\"])\n",
    "tokenizer.decoder = decoders.ByteLevel(add_prefix_space=True, use_regex=True)\n",
    "tokenizer.post_processor = tokenizers.processors.ByteLevel(trim_offsets=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# PreTrainedTokenizerFast类无法从 tokenizer 对象推断出哪个标记是掩码标记、[CLS] 标记等,需要手动指定\n",
    "# 上文的通过from_pretrained('t5-base')定义的old_tokenizer,自带了特殊标记,不用指定\n",
    "# 到这一步和上文 step 4 一致了\n",
    "old_tokenizer = PreTrainedTokenizerFast(\n",
    "    tokenizer_object=tokenizer,\n",
    "    unk_token=\"[UNK]\",\n",
    "    pad_token=\"[PAD]\",\n",
    "    cls_token=\"[CLS]\",\n",
    "    sep_token=\"[SEP]\",\n",
    "    mask_token=\"[MASK]\",\n",
    "    bos_token='[BOS]',\n",
    "    eos_token='[EOS]',                  \n",
    ")\n",
    "tokenizer = old_tokenizer.train_new_from_iterator(iter_training_corpus, vocab_size=40960)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# add \\t \\n if char level tokenizer\n",
    "# if '\\t' not in tokenizer.vcoab:\n",
    "#     tokenizer.add_tokens(['\\t'])\n",
    "# if '\\n' not in tokenizer.vcoab:\n",
    "#     tokenizer.add_tokens(['\\n'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer.save_pretrained('../model_save/my_tokenizer_wiki')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "txt = '这是一段中英混输的句子, (chinese and English, here are words.)'\n",
    "# toeknize\n",
    "tokens = tokenizer.tokenize(txt)\n",
    "print(tokens)\n",
    "# 字级别输出:\n",
    "# ['▁这是', '一段', '中英', '混', '输', '的', '句子', '▁,', '▁(', '▁ch', 'inese', '▁and', '▁Eng', 'lish', '▁,', '▁h', 'ere', '▁', 'are', '▁w', 'ord', 's', '▁.', '▁)']\n",
    "\n",
    "# Byte级别输出\n",
    "# ['Ġè¿Ļæĺ¯', 'ä¸Ģ段', 'ä¸Ńèĭ±', 'æ··', 'è¾ĵ', 'çļĦ', 'åı¥åŃIJ', 'Ġ,', 'Ġ(', 'Ġch', 'inese', 'Ġand', 'ĠEng', 'lish', 'Ġ,', 'Ġh', 'ere', 'Ġare', 'Ġw', 'ord', 's', 'Ġ.', 'Ġ)']\n",
    "\n",
    "# decode\n",
    "ids = tokenizer.encode(txt)\n",
    "tokenizer.decode(ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "py310",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}