Spaces:
Runtime error
Runtime error
File size: 40,868 Bytes
f4fac26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 |
import ujson
import re
from os.path import dirname, abspath, exists, isdir
from os import remove, mkdir, walk
import time
from collections import defaultdict
from matplotlib import pyplot as plt
import codecs, csv
import pandas as pd
import numpy as np
from rich import progress
from rich.table import Table
from rich.console import Console
from fastparquet import ParquetFile, write
import pyarrow.parquet as pq
from opencc import OpenCC
import sys
sys.path.extend(['.','..'])
from logger import Logger
from config import PROJECT_ROOT
from utils.functions import get_path_of_suffix_files, DropDatasetDuplicate
log = Logger('data_process', save2file=True, file_name=PROJECT_ROOT + '/logs/raw_data_process.log')
punctuation = set("!\"#$%&'()*+,-./:;<=>?@[\]^_`{|}~.,;《》?!“”‘’@#¥%…&×()——+【】{};;●,。&~、|\s::\n")
en_punctuation = ",().!;:"
zh_punctuation = ",()。!;:"
def delete_file(file: str)-> bool:
'''
询问删除文件
'''
if exists(file):
ans = input('delete file: {} ? Yes (y) or No (n)'.format(file))
ans = ans.lower()
if ans in ('yes', 'y'):
remove(file)
print('deleted.')
return True
return False
def remove_duplicate_punctuation(sentence: str) -> str:
'''
删除句子中重复的标点符号、重复的空格,同时将换行变为特殊字符'\n'
'''
# 将空格(全角空格)替换为逗号, 可能会有重复的空客,下面删除重复标点会删除
sentence = re.sub(' | ', ',', sentence)
ans = ''
n = len(sentence)
p = 0
while p < n:
ans += sentence[p]
while p + 1 < n and sentence[p] in punctuation and sentence[p + 1] in punctuation:
p += 1
p += 1
return ans
def convert_en_punctuation_to_zh_punct(sentence: str) -> str:
'''
将句子中的英文标点替换文中文标点
'''
n = len(zh_punctuation)
for i in range(n):
sentence = sentence.replace(en_punctuation[i], zh_punctuation[i])
return sentence
def get_sentences_dice_similarity(st_a: str, st_b: str) -> float:
'''
获取两个句子的Dice相似度(Dice similarity)
s(a, b) = 2 * len( set(a) & set(b) ) / (len(set(a)) + len(set(b)))
'''
set_a, set_b = set(st_a), set(st_b)
total_len = len(set_a) + len(set_b)
if total_len == 0: return 0.0
inter_set = set_a & set_b
return ( 2 * len(inter_set)) / total_len
def write_single_parquet_file(file_name: str, data_frame: pd.DataFrame) -> None:
'''
将dataframe写到单独的parquet file中
'''
append = False
if exists(file_name):
append = True
write(file_name, data_frame, compression='GZIP',append=append)
def read_and_write_template(read_file: str, write_to_file: str, call_back: object, group_cnt: int=10000) -> None:
'''
处理数据读写模板,需要提供一个回调函数call_back,
read_file: 原始数据文件
write_to_file:处理后的要保存数据文件
call_back:函数输入一个字符串,输出一个处理后的字典dict,如果输入的字符串为无效数据,请返回None
group_cnt: parquet file分割行数
如:
>>> def call_back(inputs: str) -> dict:
>>> if check(inputs) not valid:
>>> return None
...
... do something for inputs
...
>>> my_dict = {
>>> 'prompt': inputs['p'],
>>> 'response': inputs['a1'] + inputs['a2'],
>>> ...
>>> }
>>> return my_dict
'''
log.info('process file:{}'.format(read_file), save_to_file=True)
start = time.time()
raw_line_cnt = 0
keep_line_cnt = 0
with progress.open(read_file, 'r', encoding='utf-8') as f_read:
cur_rows = []
append = cur_rows.append
for line in f_read:
try:
raw_line_cnt += 1
write_dict = call_back(line)
if write_dict is None: continue
keep_line_cnt += 1
append(write_dict)
# ujson.dump(write_obj, f_write, indent=4, ensure_ascii=False)
# ujson.dump(write_obj, f_write, ensure_ascii=False,)
# f_write.write('\n')
if len(cur_rows) >= group_cnt:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(write_to_file, df)
cur_rows = []
append = cur_rows.append
except Exception as e:
# log.error('处理文件异常:{}, content:{}'.format(str(e), line))
print(line)
raise e
# end for
# 处理末尾部分
if len(cur_rows) > 0:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(write_to_file, df)
cur_rows = []
end = time.time()
log.info('原始文件:{},共{}行,处理后剩余{}行,保存到文件:{}。耗时:{:.6}s'\
.format(read_file, raw_line_cnt, keep_line_cnt, write_to_file, end - start), save_to_file=True)
#=====================================数据集处理=================================
def process_web_text(keep_start: int=5, response_less_word: int=10) -> None:
'''
处理425万社区问答webtext2019zh知识类数据集
keep_start: 只保留点赞数大于keep_start的问答
response_less_word: 答案至少要有response_less_word个字
'''
file_names = [
'/data/raw_data/web_text_zh_test.json',
'/data/raw_data/web_text_zh_train.json',
'/data/raw_data/web_text_zh_valid.json',
]
save_file_name = PROJECT_ROOT + '/data/my_data/my_web_text_zh.parquet'
# 后续append写入,存在文件先删除
if exists(save_file_name):
assert delete_file(save_file_name)
def process_function(line: str) -> dict:
item = ujson.loads(line)
if item['star'] < keep_start or len(item['content']) < response_less_word:
return None
# 数据清洗
# 去除重复的标点符号
prompt = remove_duplicate_punctuation(item['title'])
response = remove_duplicate_punctuation(item['content'])
write_dict = {
"prompt": prompt,
"response": response,
}
return write_dict
for file_name in file_names:
read_file = PROJECT_ROOT + file_name
read_and_write_template(read_file, save_file_name, process_function)
def process_bake_qa(response_less_word: int=15) -> None:
'''
处理147万百度知道知识类数据集
'''
file_names = [
'/data/raw_data/baike_qa_train.json',
'/data/raw_data/baike_qa_valid.json',
]
save_file_name = PROJECT_ROOT + '/data/my_data/my_baike_qa.parquet'
# 后续append写入,存在文件先删除
if exists(save_file_name):
assert delete_file(save_file_name)
def process_function(line: str) -> dict:
item = ujson.loads(line)
if len(item['answer']) < response_less_word:
return None
# 数据清洗
prompt = ''
if get_sentences_dice_similarity(item['title'], item['desc']) >= 0.90:
# title 和desc 相似度过高,只用title作为问题
prompt = item['title']
else:
# title 和desc拼接形成问题
prompt = "{}{}".format(item['title'], item['desc'])
# 删除\r
prompt = prompt.replace('\r','')
# 删除重复的标点符号
prompt = remove_duplicate_punctuation(prompt)
# 去除重复的标点符号
response = item['answer'].replace('\r','')
response = remove_duplicate_punctuation(response)
# 剔除问题和答案过短的数据
if len(prompt) < 3 or len(response) < response_less_word:
return None
write_dict = {
"prompt": prompt,
"response": response,
}
return write_dict
for file_name in file_names:
read_file = PROJECT_ROOT + file_name
read_and_write_template(read_file, save_file_name, process_function)
def repair_line_error_csv_file(raw_csv_file: str, save_suffix: str, read_encoding: str='utf-8', ) -> None:
'''
修复csv文件,将文件中换行符替换为\n,字段中的英文字符替换为中文字符
'''
with codecs.open(raw_csv_file, 'r', encoding=read_encoding, errors='ignore') as f:
reader = csv.reader(f)
new_lines = []
for line in reader:
for i in range(len(line)):
line[i] = line[i].replace('\n', '\\n') # 处理异常的换行符
line[i] = line[i].replace(',', ',') # 英文逗号换为中文逗号
new_lines.append(line)
with open(raw_csv_file[: -4] + save_suffix, 'w', encoding='utf-8', newline="") as f:
writer = csv.writer(f)
writer.writerows(new_lines)
def process_chinese_medical_datasets(response_less_word: int=15) -> None:
'''
处理中国医药领域问答数据集
'''
raw_dataset_dir = PROJECT_ROOT + '/data/raw_data/chinese_medical_dialogue_datasets'
raw_data_files = get_path_of_suffix_files(raw_dataset_dir, '.csv')
# 如果没有修复的文件,则修复csv文件换行异常
suffix = '.repaired.csv'
need_to_repair_files = [
file_name for file_name in raw_data_files \
if not file_name.endswith(suffix) and file_name[0: -4] + suffix not in raw_data_files
]
# 修复异常换行的文件
for file_name in need_to_repair_files:
repair_line_error_csv_file(file_name, suffix, read_encoding='gb2312')
# 重新获取原始文件(即修复后的文件)
raw_data_files = get_path_of_suffix_files(raw_dataset_dir, suffix)
# 获取要保存的文件名
save_file = PROJECT_ROOT + '/data/my_data/my_chinese_medical_dialogue.parquet'
# for file_name in raw_data_files:
# file_name = file_name.split('/')[-1][0: -(len(suffix))] + '.parquet'
# file_name = PROJECT_ROOT + '/data/my_data/' + file_name
# save_files.append(file_name)
# 后续append写入,存在文件先删除
if exists(save_file):
assert delete_file(save_file)
def process_function(line: str) -> dict:
# department,title,ask,answer
item = line.split(',') # csv文件逗号分割
if len(item) < 4:
print(item)
return None
if len(item[3]) < response_less_word:
return None
# 数据清洗
prompt = ''
if get_sentences_dice_similarity(item[1], item[2]) >= 0.90:
# title 和ask 相似度过高,只用ask作为问题
prompt = item[2]
else:
# title 和 ask 拼接形成问题
prompt = "{}{}".format(item[1], item[2])
# 删除\r
prompt = prompt.replace('\r','')
# 删除重复的标点符号
prompt = remove_duplicate_punctuation(prompt)
# 去除重复的标点符号
response = ''.join(item[3: ]).replace('\r','')
response = remove_duplicate_punctuation(response)
# 剔除问题和答案过短的数据
if len(prompt) < 3 or len(response) < response_less_word:
return None
write_dict = {
"prompt": prompt,
"response": response,
}
return write_dict
for i, file_name in enumerate(raw_data_files):
read_file = file_name
read_and_write_template(read_file, save_file, process_function)
def process_finace_dataset(prompt_less_word: int=10, response_less_word: int=15) -> None:
'''
处理金融问答数据集
'''
finace_data_file = PROJECT_ROOT + '/data/raw_data/financezhidao_filter.csv'
suffix = '.repaired.csv'
if not exists(finace_data_file[0: -4] + suffix):
repair_line_error_csv_file(finace_data_file, save_suffix=suffix, read_encoding='utf-8')
def process_function(line: str) -> dict:
# title,prompt,reply,is_best
item = line.split(',') # csv文件逗号分割
if len(item) < 4:
print(item)
return None
if len(item[0]) + len(item[1]) < prompt_less_word or len(item[2]) < response_less_word:
return None
# 数据清洗
prompt = ''
if get_sentences_dice_similarity(item[0], item[1]) >= 0.90:
# title 和prompt 相似度过高,只用最长的作为问题
prompt = item[0] if len(item[0]) > len(item[0]) else item[1]
else:
# title 和 ask 拼接形成问题
prompt = "{}{}".format(item[0], item[1])
# 删除\r
prompt = prompt.replace('\r','')
# 删除重复的标点符号
prompt = remove_duplicate_punctuation(prompt)
# 去除重复的标点符号
response = ''.join(item[2]).replace('\r','')
response = remove_duplicate_punctuation(response)
# 剔除问题和答案过短的数据
if len(prompt) < prompt_less_word or len(response) < response_less_word:
return None
write_obj = {
"prompt": prompt,
"response": response,
}
return write_obj
read_file = finace_data_file[0: -4] + suffix
write_file = PROJECT_ROOT + '/data/my_data/' + read_file.split('/')[-1][0: -(len(suffix))] + '.parquet'
# 后续append写入,存在文件先删除
if exists(write_file):
assert delete_file(write_file)
read_and_write_template(read_file, write_file, process_function)
def process_zhihu_kol_dataset(prompt_less_word: int=4, response_less_word: int=10, group_cnt: int=10000) -> None:
'''
处理知乎数据集
'''
raw_zhihu_data_path = abspath(dirname(dirname(__file__))) + '/data/raw_data/zhihu-kol'
file_names = []
suffix = '.parquet'
for root, _, files in walk(raw_zhihu_data_path):
for file in files:
if file.endswith(suffix):
file_names.append(root + '/' + file)
def process_function(sentence: str) -> str:
'''
针对一个句子的数据清洗
'''
# 删除\r
sentence = sentence.replace('\r','')
# 删除重复的标点符号
sentence = remove_duplicate_punctuation(sentence)
return sentence
# row keys :['INSTRUCTION', 'RESPONSE', 'SOURCE', 'METADATA']
save_file = PROJECT_ROOT + '/data/my_data/zhihu_kol.parquet'
# 后续append写入,存在文件先删除
if exists(save_file):
assert delete_file(save_file)
all_cnt, keep_cnt = 0, 0
cur_rows = []
append = cur_rows.append
for file in file_names:
pf = pq.read_table(file)
log.info('process file: {}'.format(file), save_to_file=True)
for prompt, response in progress.track(zip(pf['INSTRUCTION'], pf['RESPONSE']), total=pf.num_rows):
all_cnt += 1
prompt, response = prompt.as_py(), response.as_py()
prompt = process_function(prompt)
response = process_function(response)
if len(prompt) < prompt_less_word or len(response) < response_less_word:
continue
keep_cnt += 1
write_dict = {
'prompt': prompt,
'response': response,
}
append(write_dict)
if len(cur_rows) >= group_cnt:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(save_file, df)
cur_rows = []
append = cur_rows.append
# end for
if len(cur_rows) > 0:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(save_file, df)
cur_rows = []
log.info('save file to: {}, 全部数据共{}行,清洗后剩余{}行'.format(save_file, all_cnt, keep_cnt), save_to_file=True)
def process_belle_knowledge_enhanced_dataset(response_less_words: int=15, group_cnt: int=10000) -> None:
'''
处理belle开源的知识增强数据集
'''
file_names = [
'/data/raw_data/bell_open_source/train_2M_CN.json',
'/data/raw_data/bell_open_source/train_0.8M_CN.json',
'/data/raw_data/bell_open_source/Belle_open_source_1M.json',
]
save_file = PROJECT_ROOT + '/data/my_data/my_belll_3M_cn.parquet'
# 后续append写入,存在文件先删除
if exists(save_file):
assert delete_file(save_file)
def process_function(line: str) -> dict:
'''
每行的处理函数
'''
item = ujson.loads(line)
prompt = item['instruction']
response = item['output']
# 剔除翻译任务
if '翻译' in prompt or 'translate' in prompt.lower():
return None
# 删除表格类任务
if '表格' in prompt or '-----' in prompt or '-----' in response:
return None
if len(response) < response_less_words:
return None
prompt = remove_duplicate_punctuation(prompt)
response = remove_duplicate_punctuation(response)
if len(response) < response_less_words:
return None
write_dict = {
'prompt': prompt,
'response': response
}
return write_dict
for file in file_names:
file = PROJECT_ROOT + file
read_and_write_template(file, save_file, process_function)
def convert_wiki_to_simple_zh(buffer_size: int=10000) -> None:
'''
将繁体wiki转换为简体Wiki
'''
raw_zh_wiki_file = PROJECT_ROOT + '/data/raw_data/wiki.txt'
save_zh_wiki_simple_file = PROJECT_ROOT + '/data/raw_data/wiki.simple.txt'
if exists(save_zh_wiki_simple_file):
assert delete_file(save_zh_wiki_simple_file)
cc = OpenCC('t2s')
cur_rows = []
append = cur_rows.append
def procees_line(line: str) -> str:
'''
处理一行文本
'''
# 将繁体转换为简体
line = cc.convert(line)
line = re.sub(r"\「|\」|\「|\」|\『|\』", '\"', line) # 将「」「」『』这些符号替换成引号
line = re.sub(r"\,\)|\;\)", ')', line) # 罗德·法尼(Rod Dodji Fanni,)
line = re.sub(r"\(\,|\(\,", '(', line) # 阿魯拉·基馬(Alula Girma (,
line = convert_en_punctuation_to_zh_punct(line) # 英文标点转换为中文标点
line = remove_duplicate_punctuation(line) # 删除中文空括号和重复的标点
return line
with progress.open(raw_zh_wiki_file, 'r', encoding='utf-8') as read_f:
with open(save_zh_wiki_simple_file, 'a', encoding='utf-8') as write_f:
for line in read_f:
line = procees_line(line)
if len(line.strip()) == 0: continue
line = '{}\n'.format(line)
append(line)
if len(cur_rows) >= buffer_size:
write_f.writelines(cur_rows)
cur_rows = []
append = cur_rows.append
if len(cur_rows) > 0:
write_f.writelines(cur_rows)
cur_rows = []
def process_zh_wiki_data_to_datset(groups_cnt: int=10000, max_len: int=512, seed: int=23333) -> None:
'''
将Wiki中文数转换为问答数据集
wiki 下载地址:https://dumps.wikimedia.org/zhwiki/
将下载的bz2文件转换为wiki.txt参考:https://github.com/apertium/WikiExtractor
'''
raw_zh_wiki_file = PROJECT_ROOT + '/data/raw_data/wiki.txt'
zhwiki_simple_file = PROJECT_ROOT + '/data/my_data/wiki_zh_simple.parquet'
# 删除已经存在的数据
if exists(zhwiki_simple_file):
assert delete_file(zhwiki_simple_file)
# 将繁体转换为简体
cc = OpenCC('t2s')
all_cnt, keep_cnt = 0, 0
# 构造问题的前缀
prompt_prefix = [
'什么是{}?',
'介绍一下{}',
'介绍一下什么是{}',
'写一篇关于{}的介绍',
'{}是什么?',
'你知道{}吗?',
'生成关于{}的介绍',
'我想知道关于{}的详细信息',
'你了解{}吗?',
'请解释一下{}',
'对于{},你有什么了解或看法吗?',
'请告诉我关于{}的信息',
'请简要描述一下{}',
'请提供有关{}的一些详细信息',
'能否解释一下{}是什么?',
'请分享一些关于{}的背景知识',
'请简要概括一下{}',
'能给我一些关于{}的背景资料吗?',
'有关{}的信息可以分享一下吗?',
'你能告诉我{}是什么吗?',
]
def procees_line(line: str) -> str:
'''
处理一行文本
'''
# 将繁体转换为简体
line = cc.convert(line)
line = re.sub(r"\「|\」|\「|\」|\『|\』", '\"', line) # 将「」「」『』这些符号替换成引号
line = re.sub(r"\,\)|\;\)", ')', line) # 罗德·法尼(Rod Dodji Fanni,)
line = re.sub(r"\(\,|\(\,", '(', line) # 阿魯拉·基馬(Alula Girma (,
line = convert_en_punctuation_to_zh_punct(line) # 英文标点转换为中文标点
line = remove_duplicate_punctuation(line) # 删除中文空括号和重复的标点
return line
np.random.seed(seed)
choice = np.random.choice
with progress.open(raw_zh_wiki_file, 'r', encoding='utf-8') as read_file:
prompt = ''
response = ''
pre_line_len = 0
cur_rows = []
append = cur_rows.append
for line in read_file:
all_cnt += 1
# prompt已经保存,但是仍有多余的行,这些行使得response的长度>max_len,故跳过,不处理
if len(prompt) == 0 and pre_line_len > 0:
pre_line_len = len(line.strip())
continue
# 清洗一行
line = procees_line(line)
# 确定问题,pre_line_len是0,既是上一行是空行,则当前行是新的百科词条,设置为prompt
if prompt == '' and line.endswith(':') and pre_line_len == 0:
prompt = choice(prompt_prefix).format(line[0: -1])
continue
pre_line_len = len(line.strip())
# 问题下来若干行为答案
if prompt != '' and not line.endswith(':'):
# 其实,pre_line_len已经是len(line.strip())了,如果len(line.strip())=0,既是当前行是0,则不管答案长度够不够,都需要保存了
if len(response) + len(line) <= max_len and pre_line_len != 0:
response = '{}{}'.format(response, line)
elif len(response) + len(line) > max_len or pre_line_len == 0:
# 长度超了或者当前的百科已经结束,保存一条样例
keep_cnt += 1
response = '{}{}'.format(response, line)
append({'prompt': prompt, 'response': ''.join(response[0: max_len])})
prompt = ''
response = ''
# =groups_cnt保存到文件
if len(cur_rows) >= groups_cnt:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(zhwiki_simple_file, df)
cur_rows = []
append = cur_rows.append
# end for
if len(prompt) > 0 and len(response) > 0:
keep_cnt += 1
append({'prompt': prompt, 'response': response})
if len(cur_rows) > 0:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(zhwiki_simple_file, df)
cur_rows = []
log.info("merge into file: {}, 全部数据共{}行,清洗后剩余{}行".format(zhwiki_simple_file, all_cnt, keep_cnt), save_to_file=True)
def merge_dataset_as_single_file(groups_cnt: int=50000, max_len: int=512, min_len: int=3, cut_max_len: bool=False) -> None:
'''
将多个数据集合并为一个数据集
'''
from_parquet_files = get_path_of_suffix_files(PROJECT_ROOT + '/data/my_data', '.parquet')
save_file = PROJECT_ROOT + '/data/my_dataset.parquet'
# 后续append写入,存在文件先删除
if exists(save_file):
assert delete_file(save_file)
cur_rows = []
append = cur_rows.append
all_cnt, keep_cnt = 0, 0
for file in from_parquet_files:
print('process file: {}'.format(file))
parquet_table = pq.read_table(file)
for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
prompt, response = prompt.as_py(), response.as_py()
all_cnt += 1
if len(prompt) < min_len or len(response) < min_len:
continue
if cut_max_len and (len(prompt) > max_len or len(response) > max_len):
prompt = prompt[0: max_len]
response = response[0: max_len]
keep_cnt += 1
append({'prompt': prompt , 'response': response})
if len(cur_rows) >= groups_cnt:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(save_file, df)
cur_rows = []
append = cur_rows.append
# 处理末尾部分
if len(cur_rows) > 0:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(save_file, df)
cur_rows = []
log.info("merge into file: {}, 全部数据共{}行,清洗后剩余{}行".format(save_file, all_cnt, keep_cnt), save_to_file=True)
def remove_dataset_duplicate_rows(groups_cnt: int=50000) -> None:
'''
使用mini_hash删除数据集中重复的部分
'''
from_parquet_files = PROJECT_ROOT + '/data/my_dataset.parquet'
save_file = PROJECT_ROOT + '/data/my_dataset_no_dulpticates.parquet'
# 后续append写入,存在文件先删除
if exists(save_file):
assert delete_file(save_file)
cur_rows = []
all_cnt, keep_cnt = 0, 0
row_index = -1
drop_dataset_duplicate = DropDatasetDuplicate(threshold=0.85, num_perm=256)
parquet_table = pq.read_table(from_parquet_files)
all_cnt = parquet_table.num_rows
# 先顺序遍历获取哪些行是重复的
for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
row_index += 1
doc = f"{prompt.as_py()}{response.as_py()}"
drop_dataset_duplicate.add_doc(index=row_index, doc=doc)
row_index = -1
need_to_drop_indexs = drop_dataset_duplicate.get_duplicate_indexs()
# 再顺序遍历一遍,重复的行不添加到新的数据集
for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
row_index += 1 # 不管有没有跳过行, row_index都必须+1
# 重复的行跳过
if row_index in need_to_drop_indexs:
continue
cur_rows.append({'prompt': prompt.as_py() , 'response': response.as_py()})
keep_cnt += 1
if len(cur_rows) >= groups_cnt:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(save_file, df)
cur_rows = []
# 处理末尾部分
if len(cur_rows) > 0:
df = pd.DataFrame(cur_rows)
write_single_parquet_file(save_file, df)
log.info("merge into file: {}, 全部数据共{}行,文档去重后剩余{}行".format(save_file, all_cnt, keep_cnt), save_to_file=True)
def shuffle_parquet_dataset(parquet_file: str, shuffle_file: str, seed: int=23333, groups_cnt: int=65536) -> None:
'''
打乱一个parquet文件数据集
'''
if not exists(parquet_file):
raise Exception('can not find parquet file: {}'.format(parquet_file))
print('start shuffle...')
pf = pq.read_table(parquet_file)
df = pf.to_pandas()
df = df.sample(frac=1.0, replace=False, random_state=seed, axis=0)
if exists(shuffle_file):
assert delete_file(shuffle_file)
# 分块写入parquet,否则小内存读取直接OOM
n = len(df)
for i in range(0, n, groups_cnt):
cur_group_df = df[i: i + groups_cnt]
write_single_parquet_file(shuffle_file, cur_group_df)
def count_my_json_data() -> None:
'''
统计目前的所有数据集数据量
'''
my_data_files = get_path_of_suffix_files(PROJECT_ROOT + '/data/my_data', '.json')
result = [['file_name', 'count']]
all_cnt = 0
for file in my_data_files:
file_name = file.split('/')[-1]
cur_cnt = 0
with progress.open(file, 'r', encoding='utf-8') as f:
for _ in f:
cur_cnt += 1
all_cnt += cur_cnt
result.append([file_name, cur_cnt])
result.append(['汇总', all_cnt])
log.info(str(result), save_to_file=True)
console = Console()
table = Table(show_header=True, show_lines=True,)
for col in result[0]:
table.add_column(col)
for i in range(1, len(result)): # 跳过表头
table.add_row(str(result[i][0]), str(result[i][1]))
console.print(table)
def count_my_parquet_data(parquet_file: str=None) -> None:
'''
统计dir目录下所有parquet数据集数据量
'''
my_data_files = []
if not parquet_file:
my_data_files = get_path_of_suffix_files(PROJECT_ROOT + '/data/my_data', '.parquet')
elif isdir(parquet_file):
my_data_files = get_path_of_suffix_files(parquet_file, '.parquet')
elif parquet_file.endswith('.parquet'):
my_data_files = [parquet_file]
result = [['file_name', 'count']]
all_cnt = 0
for file in my_data_files:
file_name = file.split('/')[-1]
cur_cnt = 0
pf = ParquetFile(file)
for pf_chunk in pf:
cur_cnt += pf_chunk.info['rows']
all_cnt += cur_cnt
result.append([file_name, cur_cnt])
result.append(['汇总', all_cnt])
log.info(str(result), save_to_file=True)
console = Console()
table = Table(show_header=True, show_lines=True,)
for col in result[0]:
table.add_column(col)
for i in range(1, len(result)): # 跳过表头
table.add_row(str(result[i][0]), str(result[i][1]))
console.print(table)
def split_train_valid_test_datasets(source_parquet_file: str, max_len: int=320, seed: int=23333, train_ratio: float=0.91, test_ratio: float=0.0875, valid_ratio: float=0.0025, groups_cnt: int=50000) -> None:
'''
将原始数据拆分为训练集、测试集和验证集
'''
assert train_ratio + test_ratio + valid_ratio == 1.0
train_parquet_file = PROJECT_ROOT + '/data/my_train_dataset.parquet'
test_parquet_file = PROJECT_ROOT + '/data/my_test_dataset.parquet'
valid_parquet_file = PROJECT_ROOT + '/data/my_valid_dataset.parquet'
if exists(train_parquet_file): assert delete_file(train_parquet_file)
if exists(test_parquet_file): assert delete_file(test_parquet_file)
if exists(valid_parquet_file): assert delete_file(valid_parquet_file)
np.random.seed(seed)
train, test, valid = [], [], []
parquet_table = pq.read_table(source_parquet_file)
for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
prompt, response = prompt.as_py(), response.as_py()
rand = np.random.random()
cur_data = {'prompt': ''.join(prompt[0: max_len]) , 'response': ''.join(response[0: max_len])}
if 0 <= rand < train_ratio:
train.append(cur_data)
elif train_ratio <= rand < train_ratio + test_ratio:
test.append(cur_data)
else:
valid.append(cur_data)
if len(train) >= groups_cnt:
write_single_parquet_file(train_parquet_file, pd.DataFrame(train))
train = []
if len(test) >= groups_cnt:
write_single_parquet_file(test_parquet_file, pd.DataFrame(test))
test = []
if len(valid) >= groups_cnt:
write_single_parquet_file(valid_parquet_file, pd.DataFrame(valid))
valid = []
if len(train) > 0:
write_single_parquet_file(train_parquet_file, pd.DataFrame(train))
train = []
if len(test) > 0:
write_single_parquet_file(test_parquet_file, pd.DataFrame(test))
test = []
if len(valid) > 0:
write_single_parquet_file(valid_parquet_file, pd.DataFrame(valid))
valid = []
def parquet_to_text(sep='[SEP]', buffer_size: int=50000) -> None:
'''
将parquet文件转换为txt预料,句子之间用sep隔开
txt文件用于训练tokenizer,使用huggingface的BPE训练会导致OOM
'''
parquet_file = PROJECT_ROOT + '/data/my_dataset.parquet'
txt_file = PROJECT_ROOT + '/data/my_corpus.txt'
if exists(txt_file):
assert delete_file(txt_file)
source_pf = ParquetFile(parquet_file)
cur_rows = []
append = cur_rows.append
with open(txt_file, 'a', encoding='utf-8') as f_write:
for pf_chunk in progress.track(source_pf):
for rows in pf_chunk.iter_row_groups():
for prompt, response in zip(rows['prompt'], rows['response']):
append(prompt + sep + response + sep + '\n')
if len(cur_rows) >= buffer_size:
f_write.writelines(cur_rows)
cur_rows = []
append = cur_rows.append
# end for
if len(cur_rows) > 0:
f_write.writelines(cur_rows)
cur_rows = []
def parquet_to_json() -> None:
'''
将parquet文件转换为json
'''
parquet_file = PROJECT_ROOT + '/data/my_finetune_data_zh.parquet'
json_file = PROJECT_ROOT + '/data/sft_train.json'
if exists(json_file):
assert delete_file(json_file)
source_pf = ParquetFile(parquet_file)
cur_rows = []
append = cur_rows.append
for pf_chunk in progress.track(source_pf):
for rows in pf_chunk.iter_row_groups():
for prompt, response in zip(rows['prompt'], rows['response']):
if len(response) == 0 or len(prompt) == 0: continue
append({
'prompt': str(prompt),
'response': str(response),
})
with open(json_file, 'w', encoding='utf-8') as f:
ujson.dump(cur_rows, f, indent=4, ensure_ascii=False)
def dataset_length_cnt() -> None:
dataset_file = PROJECT_ROOT + '/data/my_dataset.shuffle.parquet'
parquet_table = pq.read_table(dataset_file)
que_len_dict, ans_len_dict = defaultdict(int), defaultdict(int)
for prompt, response in progress.track(zip(parquet_table['prompt'], parquet_table['response']), total=parquet_table.num_rows):
prompt, response = prompt.as_py(), response.as_py()
que_len_dict[len(prompt)] += 1
ans_len_dict[len(response)] += 1
que_len, ans_len = [], []
for k, v in que_len_dict.items():
que_len.append([k, v])
for k, v in ans_len_dict.items():
ans_len.append([k, v])
def gather_gt_x(array: list[tuple], x: int=512) -> list:
'''
长度大于x的合并在一起
'''
new_array = []
gt_x_cnt = 0
for item in array:
if item[0] < x:
new_array.append([item[0], item[1]])
else:
gt_x_cnt += item[1]
new_array.append([x, gt_x_cnt])
return new_array
max_len = 512
ans_list = gather_gt_x(ans_len, max_len)
ans_list.sort(key=lambda x: x[0])
que_list = gather_gt_x(que_len, max_len)
que_list.sort(key=lambda x: x[0])
ans_pd = pd.DataFrame(ans_list, columns=['length', 'count'])
que_pd = pd.DataFrame(que_list, columns=['length', 'count'])
def plot_sub_bar(plt, x, y, title: str, color: str='g') ->None:
plt.bar(x, y, color=color, label='sample count')
plt.ticklabel_format(style='sci',scilimits=(0,0), axis='y')
plt.legend()
plt.xlabel('length')
plt.ylabel('count')
plt.title(title)
plt.figure(figsize=(10, 10),dpi=200)
plt.subplot(2, 2, 1)
plot_sub_bar(plt, que_pd['length'], que_pd['count'], title='prompt length', color='c')
plt.subplot(2, 2, 2)
plot_sub_bar(plt, ans_pd['length'], ans_pd['count'], title='response length', color='g')
le512_pd = ans_pd[ans_pd['length'] < 512]
plt.subplot(2, 2, 3)
plot_sub_bar(plt, le512_pd['length'], le512_pd['count'], title='response length < 512', color='limegreen')
le320_pd = ans_pd[ans_pd['length'] < 320]
plt.subplot(2, 2, 4)
plot_sub_bar(plt, le320_pd['length'], le320_pd['count'], title='response length < 320', color='limegreen')
plt.savefig(PROJECT_ROOT + '/img/sentence_length.png')
plt.show()
def process_belle_knowledge_enhanced_dataset_for_finetune(max_len: int=320, group_cnt: int=50000) -> None:
'''
处理belle开源的知识增强数据集
'''
file_names = [
'/data/raw_data/bell_open_source/Belle_open_source_0.5M.json',
'/data/raw_data/bell_open_source/train_conv_2.json',
'/data/raw_data/bell_open_source/generated_chat_0.4M.json',
]
save_file = PROJECT_ROOT + '/data/my_finetune_data_zh.parquet'
# 后续append写入,存在文件先删除
if exists(save_file):
assert delete_file(save_file)
def process_function(line: str) -> dict:
'''
每行的处理函数
'''
item = ujson.loads(line)
prompt = item['instruction']
response = item['output']
# 剔除翻译任务
if 'translate' in prompt.lower(): return None
for word in ('翻译', '英译', '译英', '中译', '译中', '汉译', '译汉'):
if word in prompt:
return None
# 删除表格类任务
if '表格' in prompt or '-----' in prompt or '-----' in response:
return None
if len(prompt) > max_len or len(response) > max_len:
return None
write_dict = {
'prompt': prompt,
'response': response
}
return write_dict
for file in file_names:
file = PROJECT_ROOT + file
read_and_write_template(file, save_file, process_function)
if __name__ == '__main__':
processed_file_dir = PROJECT_ROOT + '/data/my_data'
if not exists(processed_file_dir):
mkdir(processed_file_dir)
# 注释了,不重复处理
# 1.
# process_web_text(keep_start=5, response_less_word=15)
# 2.
# process_bake_qa(response_less_word=15)
# 3.
# process_chinese_medical_datasets(response_less_word=15)
# 4. 金融问答数据集质量太差了
# process_finace_dataset(prompt_less_word=10, response_less_word=15)
# 5.
# process_zhihu_kol_dataset(prompt_less_word=4, response_less_word=10)
# 6.
# process_belle_knowledge_enhanced_dataset(response_less_words=5)
# convert_wiki_to_simple_zh()
# 7.
# process_zh_wiki_data_to_datset(groups_cnt=10000, max_len=512)
#=================================================================
# merge
# merge_dataset_as_single_file(groups_cnt=50000, min_len=3, max_len=512, cut_max_len=True)
remove_dataset_duplicate_rows(groups_cnt=50000)
# # shuffle
# shuffle_parquet_dataset(
# parquet_file=PROJECT_ROOT + '/data/my_dataset.parquet',
# shuffle_file=PROJECT_ROOT + '/data/my_dataset.shuffle.parquet',
# seed=23333
# )
# split train validated and test
# split_train_valid_test_datasets(
# source_parquet_file=PROJECT_ROOT + '/data/my_dataset.shuffle.parquet',
# max_len=320,
# groups_cnt=50000
# )
# parquet_to_text()
# count_my_parquet_data(PROJECT_ROOT + '/data/my_dataset.parquet')
# dataset_length_cnt()
# process_belle_knowledge_enhanced_dataset_for_finetune(max_len=320, group_cnt=50000)
# count_my_parquet_data(PROJECT_ROOT + '/data/')
parquet_to_json()
# count_my_json_data()
|