File size: 12,465 Bytes
f4fac26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from collections import Counter
from typing import Union
from dataclasses import make_dataclass, field
from transformers import T5Config
import ctypes
import os
import platform
import re
import torch

from datasketch import MinHash, MinHashLSH
from collections import defaultdict
from transformers.trainer_callback import TrainerControl, TrainerState
from transformers import TrainingArguments, TrainerCallback

# from nltk import ngrams
from nltk.translate.bleu_score import sentence_bleu
import numpy as np
import ujson

from config import T5ModelConfig

# 结束标点符号
END_PUN = set(".。!!))》}】??\"”")

class MyTrainerCallback(TrainerCallback):
    log_cnt = 0
    def on_log(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
        '''
        在打印 n 次日志后清除cuda缓存,适合低显存设备,能防止OOM
        '''
        self.log_cnt += 1
        if self.log_cnt % 2 == 0:
            torch.cuda.empty_cache()
    
    def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
        '''
        在 on_epoch_end 时保存一次模型。
        TrainingArguments的 save_strategy 中 epoch 和 steps 不兼容。要实现每隔 save_steps 步保存一次检查点,考虑到磁盘空间大小,最多只保存最近N个检查点。
        '''
        # 设置should_save=True并返回即可
        control.should_save = True
        return control


# 保留中文和英文、下划线,不要标点符号
NON_CHAR = re.compile("[^[\u4E00-\u9FA5|A-Za-z_0-9]")

def _get_doc_mini_hash(doc: list[str] | str, num_perm: int) -> MinHash:
    '''
    获取一段文本的mini hash
    '''
    mini_hash = MinHash(num_perm=num_perm)
    for s in doc:
        mini_hash.update(s.encode('utf-8'))
    return mini_hash

class DropDatasetDuplicate:

    def __init__(self,  threshold: float=0.85, num_perm: int=256) -> None:
        '''
        获取一个数据集中所有重复(相似的超过threshold)的index,输入为:list[str],一个str元素为一段文本(doc)
        如输入: [a, b, c, d, c, d, e] 返回:{4, 5} (后面两个 c, d 的index)
        '''
        self.similar_index_cluster = defaultdict(set)
        self.data_lsh = MinHashLSH(threshold=threshold, num_perm=num_perm) 
        self.num_perm = num_perm

    def add_doc(self, index: object, doc: str,) -> set[int]:
        '''
        添加文档,
        index: 文档的索引
        doc: 文档本身
        '''

        # 只保留中文和英文、下划线,不要标点符号
        doc = ''.join(NON_CHAR.split(doc))
        # doc = [''.join(t) for t in list(ngrams(doc, 3))]

        doc_hash = _get_doc_mini_hash(doc, self.num_perm)
        close_duplicates = self.data_lsh.query(doc_hash)

        self.data_lsh.insert(index, doc_hash)

        # 所有相似的doc在similar_index_cluster中的key都是最早出现的idx
        # 如:data中索引inndex 2, 7, 8, 9, 10, 12 是相似的,则在similar_index_cluster中表现为 {2: {8, 9, 10, 12}}
        if len(close_duplicates) > 0:
            min_idx= min(close_duplicates)
            self.similar_index_cluster[min_idx].add(index)
    
    def get_duplicate_indexs(self):
        '''
        返回所有的重复文档索引
        '''
        similar_index_cluster = self.similar_index_cluster
        need_to_remove_idx = set()
        
        for key_idx in similar_index_cluster.keys():
            need_to_remove_idx |= similar_index_cluster[key_idx]

        return need_to_remove_idx


def get_T5_config(config: T5ModelConfig, vocab_size: int, decoder_start_token_id: int=0, eos_token_id: int=1) -> T5Config:
    '''
    用户配置转换为T5Config
    '''
    t5_config = T5Config()
    # t5_config.model_type = 'TextToTextModel'
    # 初始化
    t5_config.d_ff = config.d_ff
    t5_config.d_kv = config.d_kv
    t5_config.d_model = config.d_model
    t5_config.num_decoder_layers = config.num_decoder_layers
    t5_config.num_heads = config.num_heads
    t5_config.num_layers = config.num_layers
    t5_config.vocab_size = vocab_size
    t5_config.decoder_start_token_id = decoder_start_token_id
    t5_config.eos_token_id = eos_token_id

    return t5_config

def f1_p_r_compute(spo_list_pred: list, spo_list_true: list, repair: bool=False):
    '''
    spo_list: [ [(s,p,o)...], [(s,p,o)]], 每一行[(s,p,o)...]为一个句子中的spo
    计算spo的f1分数,精确率,召回率,
    '''
    assert len(spo_list_pred) == len(spo_list_true)

    def repair_song_album(spo_list: list, song: list, album: list):
        '''
        修复一条文本的'歌曲'和'专辑'的spo。对于歌曲x(subject)的关系歌手、作词、作曲,x必须同时存在于song和album中
        '''
        if len(song) == 0 and len(album) == 0:
            return spo_list

        ps = ['歌手', '作词', '作曲']
        new_spo_list = []
        for spo in spo_list:
            s, p = spo[0], spo[1]
            if p in ps and s in album and s not in song:
                continue
            new_spo_list.append(spo)
        
        return new_spo_list

    def repair_song_album_list(spo_list: list):
        '''
        '''
        new_spo_list = []
        for spos in spo_list:
            song, album = [], []
            for spo in spos:
                s, p, o = spo
                if p == '所属专辑':
                    song.append(s)
                    album.append(o)
            new_spo_list.append(repair_song_album(spos, song, album))
        
        return new_spo_list
    if repair:
        spo_list_pred = repair_song_album_list(spo_list_pred)
        spo_list_true = repair_song_album_list(spo_list_true)

    TP = 1e-10      # 正类判定为正类, A
    # TN = 1e-10    # 负类判定为负类
    TP_FP = 1e-10   # 检索到的, A + B
    TP_FN = 1e-10   # 真正想要的,A + C
    # FP = 1e-10    # 负类判定为正类
    # FN = 1e-10    # 正类判定为负类

    # p = a / (a + b)
    # r = a / (a + c)
    # f1 = 2pr / (p + r)

    for i in range(len(spo_list_true)):
        pred_set = set(spo_list_pred[i])
        true_set = set(spo_list_true[i])

        pred_true_set = pred_set & true_set     # 预测和真实取交集

        TP += len(pred_true_set)    # 检索到且是想要的, A
        TP_FP += len(pred_set)      # 检索到的,包括想要的和不想要的,A + B
        TP_FN += len(true_set)      # 真正想要的, 包括检索到和没检索到的,A + C

    p = TP / TP_FP
    r = TP / TP_FN
    f1 = (2 * p * r) / (p + r)
    
    return f1, p, r


def fixed_response(item: str) -> str:
    '''
    修复被截断的回答,从末尾往回找第一个结束标点
    '''
    if len(item) <= 1: return item
    if item[-1] in END_PUN: return item

    n = len(item)
    i = n - 1
    while i > 0 and item[i] not in END_PUN:
        i -= 1

    return ''.join(item[0: i + 1])


def fixed_space(sentence: str)->str:
    '''单个空格删除,连续两个空格保留一个
    '''
    n = len(sentence)
    new_sentence = []
    i = 0
    while i < n:
        word =  sentence[i]
        if word != ' ':
            new_sentence.append(word)
        elif i + 1 < n and sentence[i + 1] == ' ':
            new_sentence.append(word)
            i += 1 # 两个空格保留一个,指针往下走一步
        i += 1

    return ''.join(new_sentence)

def get_free_space_of_disk(folder: str='./') -> float:
    '''
    获取指定目录所在磁盘大小,返回单位: GB
    '''
    res_val = 0.0
    if platform.system() == 'Windows':
        free_bytes = ctypes.c_ulonglong(0)
        ctypes.windll.kernel32.GetDiskFreeSpaceExW(ctypes.c_wchar_p(folder), None, None, ctypes.pointer(free_bytes))
        res_val = free_bytes.value 
    else:
        st = os.statvfs(folder)
        res_val = st.f_bavail * st.f_frsize
    
    return res_val / (1024 ** 3)

def my_average(arry_list: list[float]) -> float:
    '''
    自定义均值计算,空数组返回0.0
    '''
    if len(arry_list) == 0: return 0.0 
    
    return np.average(arry_list)


def json_to_dataclass(json_file: str, class_name: str='Config') -> type:
    '''
    将json配置文件转换为dataclass
    >>> example:
    >>> data_class = json_to_dataclass('my_config.json', 'Config')
    >>> my_config = data_class()
    >>> assert my_config.name == 'Alice'
    >>> my_config.name = 'Bob' 
    '''
    json_dict = {}
    with open(json_file, 'r', encoding='utf-8') as f:
        json_dict = ujson.load(f)

    # 将dict转换为可迭代的属性名称、属性类型,默认值
    fields_list = []
    for k, v in json_dict.items():
        fields_list.append( (k, type(v), field(default=v)) )
    
    data_class = make_dataclass(cls_name=class_name, fields=fields_list)

    return data_class


def get_path_of_suffix_files(root: str, suffix: str, with_create_time: bool=False) -> list:
    '''
        获取指定目录下下指定后缀的所有文件的绝对路径
    '''
    suffix_files = []
    for root, _, files in os.walk(root):
        for file in files:
            if file.endswith(suffix):
                full_path = '{}/{}'.format(root, file)
                if with_create_time:
                    suffix_files.append( (full_path, os.path.getctime(full_path)) )
                else:
                    suffix_files.append(full_path)
                            
    return suffix_files

def get_bleu4_score(reference: Union[str, list[str]], outputs: Union[str, list[str]], n_gram: int=4) -> float:
    '''
    获取bleu4分数
    '''
    
    weights = np.ones(n_gram) * (1.0 / n_gram)

    outputs_len, reference_len = len(outputs), len(reference)

    if not type(reference) is list:
        reference = list(reference)
    if not type(outputs) is list:
        outputs = list(outputs)

    outputs_counter = extract_Ngram(outputs, n_gram=n_gram)
    reference_counter = extract_Ngram(reference, n_gram=n_gram)

    ngram_counter_clip = outputs_counter & reference_counter

    clip_counter = np.zeros(n_gram)
    output_ngram_counter = np.zeros(n_gram)

    for (key, ngram), cnt in ngram_counter_clip.items():
        clip_counter[ngram - 1] += cnt 
    
    for (key, ngram), cnt in outputs_counter.items():
        output_ngram_counter[ngram - 1] += cnt
    
    # print(clip_counter, output_ngram_counter)
    if np.min(clip_counter) == 0.0:
        return np.array(0.0)

    precision_scores = clip_counter / output_ngram_counter
   
    # bleu
    log_precision_scores = weights * np.log(precision_scores)
    
    # 几何平均形式求平均值然后加权
    geometric_mean = np.exp(np.sum(log_precision_scores))
    brevity_penalty = np.exp(1 - (reference_len / outputs_len))

    # brevity_penalty = 1.0,   bleu = sentence_bleu([reference], outputs)
    # brevity_penalty = 1.0

    bleu = brevity_penalty * geometric_mean

    return bleu


def extract_Ngram(words_list: list[str], n_gram: int) -> tuple:
    '''
    获取一个句子的n_grama
    return:
        ngram_counter: key = ('w1  w2 ... wn', n_gram), value: count of key
    '''
    n = len(words_list)
    ngram_counter = Counter()

    for i in range(1, n_gram + 1):
        for j in range(n - i + 1):
            key = ' '.join(words_list[j: j + i])
            ngram_counter[(key, i)] += 1

    return ngram_counter


def save_model_config(config_dict: dict, file: str) -> None:
    '''
    将模型配置写入到json文件, 输入模型保存的目录及文件名
    '''
    # file = file.replace('\\', '/')
    # file = '{}/model_config.json'.format('/'.join(file.split('/')[0: -1]))
    
    with open(file, 'w', encoding='utf-8') as f:
        ujson.dump(config_dict, f, indent=4, ensure_ascii=False)

if __name__ == '__main__':
    ref = '抱歉,我不知道ABB代表什么意思'
    out = '我不明白ABB是什么意思'
    b1 = sentence_bleu([list(out)], list(ref),  weights=(0.25, 0.25, 0.25, 0.25))
    print(b1)
    b2 = get_bleu4_score(out, ref)
    print(b2)

    
    candidate_corpus = ['i', 'have', 'a', 'pen', 'on', 'my', 'desk', 'a', 'b', 'c', 'd','f','f']
    reference_corpus = ['there', 'is', 'a', 'pen', 'on', 'my', 'desk', 'a', 'b', 'd', 'd', 'fd']
    
    print('----')
    print(sentence_bleu([reference_corpus], candidate_corpus,  weights=(0.25, 0.25, 0.25, 0.25)))
    print(get_bleu4_score(reference_corpus, candidate_corpus))