Spaces:
Runtime error
Runtime error
File size: 15,830 Bytes
f4fac26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# coding=utf-8\n",
"from typing import Dict\n",
"import time \n",
"import pandas as pd \n",
"\n",
"import torch\n",
"from datasets import Dataset, load_dataset\n",
"from transformers import PreTrainedTokenizerFast, Seq2SeqTrainer, DataCollatorForSeq2Seq,Seq2SeqTrainingArguments\n",
"from transformers.generation.configuration_utils import GenerationConfig"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import sys, os\n",
"root = os.path.realpath('.').replace('\\\\','/').split('/')[0: -2]\n",
"root = '/'.join(root)\n",
"if root not in sys.path:\n",
" sys.path.append(root)\n",
"\n",
"from model.chat_model import TextToTextModel\n",
"from config import SFTconfig, InferConfig, T5ModelConfig\n",
"from utils.functions import get_T5_config\n",
"\n",
"os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def get_dataset(file: str, split: str, encode_fn: callable, encode_args: dict, cache_dir: str='.cache') -> Dataset:\n",
" \"\"\"\n",
" Load a dataset\n",
" \"\"\"\n",
" dataset = load_dataset('json', data_files=file, split=split, cache_dir=cache_dir)\n",
"\n",
" def merge_prompt_and_responses(sample: dict) -> Dict[str, str]:\n",
" # add an eos token note that end of sentence, using in generate.\n",
" prompt = encode_fn(f\"{sample['prompt']}[EOS]\", **encode_args)\n",
" response = encode_fn(f\"{sample['response']}[EOS]\", **encode_args)\n",
" return {\n",
" 'input_ids': prompt.input_ids,\n",
" 'labels': response.input_ids,\n",
" }\n",
"\n",
" dataset = dataset.map(merge_prompt_and_responses)\n",
" return dataset"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def sft_train(config: SFTconfig) -> None:\n",
"\n",
" # step 1. 加载tokenizer\n",
" tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)\n",
" \n",
" # step 2. 加载预训练模型\n",
" model = None\n",
" if os.path.isdir(config.finetune_from_ckp_file):\n",
" # 传入文件夹则 from_pretrained\n",
" model = TextToTextModel.from_pretrained(config.finetune_from_ckp_file)\n",
" else:\n",
" # load_state_dict\n",
" t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)\n",
" model = TextToTextModel(t5_config)\n",
" model.load_state_dict(torch.load(config.finetune_from_ckp_file, map_location='cpu')) # set cpu for no exception\n",
" \n",
" # Step 4: Load the dataset\n",
" encode_args = {\n",
" 'truncation': False,\n",
" 'padding': 'max_length',\n",
" }\n",
"\n",
" dataset = get_dataset(file=config.sft_train_file, encode_fn=tokenizer.encode_plus, encode_args=encode_args, split=\"train\")\n",
"\n",
" # Step 5: Define the training arguments\n",
" # T5属于sequence to sequence模型,故要使用Seq2SeqTrainingArguments、DataCollatorForSeq2Seq、Seq2SeqTrainer\n",
" # huggingface官网的sft工具适用于language model/LM模型\n",
" generation_config = GenerationConfig()\n",
" generation_config.remove_invalid_values = True\n",
" generation_config.eos_token_id = tokenizer.eos_token_id\n",
" generation_config.pad_token_id = tokenizer.pad_token_id\n",
" generation_config.decoder_start_token_id = tokenizer.pad_token_id\n",
" generation_config.max_new_tokens = 320\n",
" generation_config.repetition_penalty = 1.5\n",
" generation_config.num_beams = 1 # greedy search\n",
" generation_config.do_sample = False # greedy search\n",
"\n",
" training_args = Seq2SeqTrainingArguments(\n",
" output_dir=config.output_dir,\n",
" per_device_train_batch_size=config.batch_size,\n",
" auto_find_batch_size=True, # 防止OOM\n",
" gradient_accumulation_steps=config.gradient_accumulation_steps,\n",
" learning_rate=config.learning_rate,\n",
" logging_steps=config.logging_steps,\n",
" num_train_epochs=config.num_train_epochs,\n",
" optim=\"adafactor\",\n",
" report_to='tensorboard',\n",
" log_level='info',\n",
" save_steps=config.save_steps,\n",
" save_total_limit=3,\n",
" fp16=config.fp16,\n",
" logging_first_step=config.logging_first_step,\n",
" warmup_steps=config.warmup_steps,\n",
" seed=config.seed,\n",
" generation_config=generation_config,\n",
" )\n",
"\n",
" # step 6: init a collator\n",
" collator = DataCollatorForSeq2Seq(tokenizer, max_length=config.max_seq_len)\n",
" \n",
" # Step 7: Define the Trainer\n",
" trainer = Seq2SeqTrainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=dataset,\n",
" eval_dataset=dataset,\n",
" tokenizer=tokenizer,\n",
" data_collator=collator,\n",
" )\n",
"\n",
" # step 8: train\n",
" trainer.train(\n",
" # resume_from_checkpoint=True\n",
" )\n",
"\n",
" loss_log = pd.DataFrame(trainer.state.log_history)\n",
" log_dir = './logs'\n",
" if not os.path.exists(log_dir):\n",
" os.mkdir(log_dir)\n",
" loss_log.to_csv(f\"{log_dir}/ie_task_finetune_log_{time.strftime('%Y%m%d-%H%M')}.csv\")\n",
"\n",
" # Step 9: Save the model\n",
" trainer.save_model(config.output_dir)\n",
"\n",
" return trainer\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config = SFTconfig()\n",
"config.finetune_from_ckp_file = InferConfig().model_dir\n",
"config.sft_train_file = './data/my_train.json'\n",
"config.output_dir = './model_save/ie_task'\n",
"config.max_seq_len = 512\n",
"config.batch_size = 16\n",
"config.gradient_accumulation_steps = 4\n",
"config.logging_steps = 20\n",
"config.learning_rate = 5e-5\n",
"config.num_train_epochs = 6\n",
"config.save_steps = 3000\n",
"config.warmup_steps = 1000\n",
"print(config)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trainer = sft_train(config)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sys, os\n",
"root = os.path.realpath('.').replace('\\\\','/').split('/')[0: -2]\n",
"root = '/'.join(root)\n",
"if root not in sys.path:\n",
" sys.path.append(root)\n",
"import ujson, torch\n",
"from rich import progress\n",
"\n",
"from model.infer import ChatBot\n",
"from config import InferConfig\n",
"from utils.functions import f1_p_r_compute\n",
"inf_conf = InferConfig()\n",
"inf_conf.model_dir = './model_save/ie_task/'\n",
"bot = ChatBot(infer_config=inf_conf)\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(傅淑云,民族,汉族),(傅淑云,出生地,上海),(傅淑云,出生日期,1915年)]\n"
]
}
],
"source": [
"ret = bot.chat('请抽取出给定句子中的所有三元组。给定句子:傅淑云,女,汉族,1915年出生,上海人')\n",
"print(ret)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[('傅淑云', '民族', '汉族'), ('傅淑云', '出生地', '上海'), ('傅淑云', '出生日期', '1915年')]\n"
]
}
],
"source": [
"def text_to_spo_list(sentence: str) -> str:\n",
" '''\n",
" 将输出转换为SPO列表,时间复杂度: O(n)\n",
" '''\n",
" spo_list = []\n",
" sentence = sentence.replace(',',',').replace('(','(').replace(')', ')') # 符号标准化\n",
"\n",
" cur_txt, cur_spo, started = '', [], False\n",
" for i, char in enumerate(sentence):\n",
" if char not in '[](),':\n",
" cur_txt += char\n",
" elif char == '(':\n",
" started = True\n",
" cur_txt, cur_spo = '' , []\n",
" elif char == ',' and started and len(cur_txt) > 0 and len(cur_spo) < 3:\n",
" cur_spo.append(cur_txt)\n",
" cur_txt = ''\n",
" elif char == ')' and started and len(cur_txt) > 0 and len(cur_spo) == 2:\n",
" cur_spo.append(cur_txt)\n",
" spo_list.append(tuple(cur_spo))\n",
" cur_spo = []\n",
" cur_txt = ''\n",
" started = False\n",
" return spo_list\n",
"print(text_to_spo_list(ret))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"test_data = []\n",
"with open('./data/test.json', 'r', encoding='utf-8') as f:\n",
" test_data = ujson.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'prompt': '请抽取出给定句子中的所有三元组。给定句子:查尔斯·阿兰基斯(charles aránguiz),1989年4月17日出生于智利圣地亚哥,智利职业足球运动员,司职中场,效力于德国足球甲级联赛勒沃库森足球俱乐部',\n",
" 'response': '[(查尔斯·阿兰基斯,出生地,圣地亚哥),(查尔斯·阿兰基斯,出生日期,1989年4月17日)]'},\n",
" {'prompt': '请抽取出给定句子中的所有三元组。给定句子:《离开》是由张宇谱曲,演唱',\n",
" 'response': '[(离开,歌手,张宇),(离开,作曲,张宇)]'}]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test_data[0:2]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bca40f71fcc34dda95eb97a6f48fea0c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"prompt_buffer, batch_size, n = [], 32, len(test_data)\n",
"traget_spo_list, predict_spo_list = [], []\n",
"for i, item in progress.track(enumerate(test_data), total=n):\n",
" prompt_buffer.append(item['prompt'])\n",
" traget_spo_list.append(\n",
" text_to_spo_list(item['response'])\n",
" )\n",
"\n",
" if len(prompt_buffer) == batch_size or i == n - 1:\n",
" torch.cuda.empty_cache()\n",
" model_pred = bot.chat(prompt_buffer)\n",
" model_pred = [text_to_spo_list(item) for item in model_pred]\n",
" predict_spo_list.extend(model_pred)\n",
" prompt_buffer = []"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[('查尔斯·阿兰基斯', '出生地', '圣地亚哥'), ('查尔斯·阿兰基斯', '出生日期', '1989年4月17日')], [('离开', '歌手', '张宇'), ('离开', '作曲', '张宇')]] \n",
"\n",
"\n",
" [[('查尔斯·阿兰基斯', '国籍', '智利'), ('查尔斯·阿兰基斯', '出生地', '智利圣地亚哥'), ('查尔斯·阿兰基斯', '出生日期', '1989年4月17日')], [('离开', '歌手', '张宇'), ('离开', '作曲', '张宇')]]\n"
]
}
],
"source": [
"print(traget_spo_list[0:2], '\\n\\n\\n',predict_spo_list[0:2])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"21636 21636\n"
]
}
],
"source": [
"print(len(predict_spo_list), len(traget_spo_list))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"f1: 0.74, precision: 0.75, recall: 0.73\n"
]
}
],
"source": [
"f1, p, r = f1_p_r_compute(predict_spo_list, traget_spo_list)\n",
"print(f\"f1: {f1:.2f}, precision: {p:.2f}, recall: {r:.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['你好,有什么我可以帮你的吗?',\n",
" '[(江苏省赣榆海洋经济开发区,成立日期,2003年1月28日)]',\n",
" '南方地区气候干燥,气候寒冷,冬季寒冷,夏季炎热,冬季寒冷的原因很多,可能是由于全球气候变暖导致的。\\n南方气候的变化可以引起天气的变化,例如气温下降、降雨增多、冷空气南下等。南方气候的变化可以促进气候的稳定,有利于经济发展和经济繁荣。\\n此外,南方地区的气候也可能受到自然灾害的影响,例如台风、台风、暴雨等,这些自然灾害会对南方气候产生影响。\\n总之,南方气候的变化是一个复杂的过程,需要综合考虑多方面因素,才能应对。']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 测试一下对话能力\n",
"bot.chat(['你好', '请抽取出给定句子中的所有三元组。给定句子:江苏省赣榆海洋经济开发区位于赣榆区青口镇临海而建,2003年1月28日,经江苏省人民政府《关于同意设立赣榆海洋经济开发区的批复》(苏政复〔2003〕14号)文件批准为全省首家省级海洋经济开发区,','如何看待最近南方天气突然变冷?'])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "py310",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|