File size: 25,320 Bytes
f4fac26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import signal
import sys
import os
import time
from typing import Union
import platform 

from psutil import virtual_memory, cpu_count
import numpy as np
from torch.utils.data import DataLoader
import torch 
from rich.progress import Progress, TextColumn, BarColumn, TimeElapsedColumn, TimeRemainingColumn
from transformers import PreTrainedTokenizerFast
from torch_optimizer import Adafactor

# import accelerate
from accelerate import Accelerator
from accelerate.utils import set_seed

# import 自定义类和函数
from model.chat_model import TextToTextModel
from utils.logger import Logger
from model.dataset import MyDataset
from config import TrainConfig, T5ModelConfig
from utils.functions import (
    get_bleu4_score, 
    save_model_config, 
    get_free_space_of_disk, 
    my_average,
    get_path_of_suffix_files,
    get_T5_config,
)

class ChatTrainer:
    def __init__(self, train_config: TrainConfig, model_config: T5ModelConfig, ) -> None:
        
        self.train_config = train_config
        self.model_config = model_config

        # file_name=None会自动生成以当前日期命名的log文件名
        self.logger = Logger('chat_trainer', std_out=True, save2file=True, file_name=None)

        self.model = None
        self.accelerator = None

        signal.signal(signal.SIGINT, self.process_exit_handler)

        self.is_win_platform = True if platform.system().lower() == 'windows' else False

        torch.manual_seed(train_config.seed)
        torch.cuda.manual_seed_all(train_config.seed)
    
    def process_exit_handler(self, signal_received, frame) -> None:
        '''
        进程退出时的操作,保存模型
        '''
        if self.accelerator and self.model:
            ask = "you are pressed `ctrl+c`,  do you want to save checkpoint? Yes (y) or No (n)"
            self.accelerator.print(ask)
            ins = input()
            
            if ins.lower() in ('yes', 'y'):

                suffix =  'exit_save_{}'.format(str(time.strftime('%Y%m%d%H%M%S', time.localtime())))

                self.accelerator.wait_for_everyone()
                self.accelerator.save_state(output_dir=self.train_config.train_state_dir)

                self.accelerator.print('model ckeck point has been saved in {}'.format(self.train_config.train_state_dir))
        
            sys.exit(0)
        else:
            print('process not in trainingg, exit.')
            sys.exit(0)

    def save_model(self, suffix: Union[str, int]) -> None:
        '''保存模型到文件
        注意:save_model不能放到is_main_process里面
        e.g:
        >>> self.save_model(epoch) # 在这里使用
        >>> if accelerator.is_main_process:
        >>>     do_somthing()
        '''
        if self.model and self.accelerator:

            # 先wait_for_everyone,再保存
            self.accelerator.wait_for_everyone()

            if self.accelerator.is_main_process:
                unwrap_model = self.accelerator.unwrap_model(self.model)
                model_dict =  self.accelerator.get_state_dict(unwrap_model)
                torch.save(model_dict, self.train_config.model_file.format(suffix))

    
    def delete_early_checkpoint(self, epoch: int, keep_latest_n: int=3,) -> None:
        '''
        删除最早的模型,最保留最近keep_latest_n个模型文件
        '''
        model_save_path = self.train_config.model_file
        model_save_path = model_save_path.replace('\\', '/')    # 针对win的路径,将\替换为/
        model_save_path = '/'.join(model_save_path.split('/')[0: -1])   # 删除末尾文件名后缀
        
        model_files = get_path_of_suffix_files(model_save_path, suffix='.bin', with_create_time=True)
        
        # 进程异常退出保存模型文件不在删除范围
        train_save_model_fils = []
        for item in model_files:
            if 'exit_save' not in item[0]:

                # 大于当前epoch的文件不不删除
                f_epoch = int(item[0].split('.')[-2])
                if epoch >= f_epoch:
                    print(epoch, f_epoch, item)
                    train_save_model_fils.append(item)

        train_save_model_fils.sort(key=lambda x: x[1])  # 按照时间从小到大排序

        if len(train_save_model_fils) <= keep_latest_n:
            return
        
        to_delete_files = train_save_model_fils[0: -keep_latest_n]
        for item in to_delete_files:
            os.remove(item[0])

    
    def train(self, is_keep_training: bool=False, is_finetune: bool=False) -> None:
        '''
        is_keep_training: 是否从断点处加载状态继续训练
        is_finetune: 是否微调,微调的话可能需要冻结部分参数
        '''
        log = self.logger
        train_config = self.train_config
        save_steps = self.train_config.save_steps
        logging_steps = self.train_config.logging_steps

        # 梯度累计的步数
        accumulation_steps = train_config.gradient_accumulation_steps

        set_seed(train_config.seed)

        accelerator = Accelerator(
            mixed_precision=train_config.mixed_precision,       # 混合精度
            gradient_accumulation_steps=accumulation_steps,     # 梯度累积
            project_dir=train_config.train_state_dir,
        )

        # 根据剩余内存大小决定是否完全加载数据集到内存中
        unuse_mem = virtual_memory().available / (1024 ** 3)  # 单位:GB
        unuse_disk = get_free_space_of_disk('./')

        # 剩余内存≥48GB将把数据集留在内存中,因为2个显卡+全全部装载900多万的训练数据到内存需要大概43GB的CPU内存
        # 如果不放在内存中,将会使用迭代器生成数据,CPU 内存小于16GB也可以运行,但是不支持顺序打乱。
        # 多GPU keep_in_memory必须=True,否则无法进行分布式训练
        keep_in_memory = True if unuse_mem >= 48.0 or torch.cuda.device_count() >= 2 else False

        if accelerator.is_main_process:
            log.info('cpu memory available: {:.2f} GB, disk space available: {:.2f} GB, keep dataset in memory: {}.'\
                    .format(unuse_mem, unuse_disk, keep_in_memory), save_to_file=True)
            log.info('operation: {}, keep training: {}, loading datasets ...'.format('finetune' if is_finetune else 'train', is_keep_training))

        # args for dataloader
        num_workers = 0
        # if not self.is_win_platform:
        #     cpu_cnt = cpu_count(logical=False)
        #     gpu_cnt = torch.cuda.device_count()
        #     if cpu_cnt >= 8 * gpu_cnt:
        #         # num_workers = 4 x number of available GPUs
        #         num_workers = int(4 * gpu_cnt)
        #     else:
        #         num_workers = int(cpu_cnt // 2)

        train_dataset = MyDataset(
            parquet_file=train_config.train_file,
            tokenizer_dir=train_config.tokenizer_dir,
            keep_in_memory=keep_in_memory,
            max_seq_len=train_config.max_seq_len,
        )
        valid_dataset = MyDataset(
            parquet_file=train_config.validation_file,
            tokenizer_dir=train_config.tokenizer_dir,
            keep_in_memory=keep_in_memory,
            max_seq_len=train_config.max_seq_len,
        )

        batch_size = train_config.batch_size_per_gpu

        train_dataloader = DataLoader(
            train_dataset, 
            batch_size=batch_size,  
            shuffle=True,
            collate_fn=train_dataset.collate_fn,
            pin_memory=False,
            num_workers=num_workers,    #设置>1会导致cpu内存缓慢增涨,最后OOM,后面再研究为什么,num_workers=4,一个epoch只减少30分钟
        )
        valid_dataloader = DataLoader(
            valid_dataset, 
            batch_size=batch_size, 
            shuffle=False,
            collate_fn=valid_dataset.collate_fn,
            pin_memory=False,
            num_workers=num_workers,
        )

        device = accelerator.device
        log.info('using device: {} '.format(str(device)), save_to_file=True)
        

        # T5: All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        tokenizer = train_dataset.tokenizer
        decoder_start_token_id = tokenizer.pad_token_id

        # for t5, set decoder_start_token_id = pad_token_id
        t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=decoder_start_token_id, eos_token_id=tokenizer.eos_token_id)

        model = TextToTextModel(t5_config)

        # 微调加载的模型并冻结embedding和encoder
        if is_finetune:
            model.load_state_dict(torch.load(train_config.finetune_from_ckp_file))
            # print(model)
            
            layers_to_freeze = [model.shared, model.encoder]

            for layer in layers_to_freeze:
                 for param in layer.parameters():
                    param.requires_grad = False

        # 保存模型配置,方便修改配置后恢复
        save_model_config(t5_config.to_diff_dict(), train_config.model_config_file)
        
        # T5训练,论文推荐使用Adafactor
        optimizer = Adafactor(params=model.parameters(), lr=train_config.learn_rate)

        
        # 获取当前机器有多少个GPU,默认全部使用
        num_gpus_used = accelerator.state.num_processes

        # 单机多卡,每个step总共的batch_size = batch_size_per_gpu * num_gpus_used
        # total_batch_size 初始化为batch_size_per_gpu真的只有CPU的情况
        total_batch_size = train_config.batch_size_per_gpu
        if num_gpus_used >= 1:
            total_batch_size = num_gpus_used * train_config.batch_size_per_gpu

        steps_per_epoch = int(np.ceil(len(train_dataset) // total_batch_size))
        eval_steps = int(np.ceil(len(valid_dataset) // total_batch_size))

        if accelerator.is_main_process:
            log.info('train dataset size: {}, steps per epoch:{}; validation dataset size: {}, steps per validation: {}; datalodater num_workers: {}.'\
                    .format(len(train_dataset), steps_per_epoch, len(valid_dataset), eval_steps, num_workers), save_to_file=True)

        
        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
                optimizer=optimizer, 
                max_lr=train_config.div_factor * train_config.learn_rate, 
                epochs=train_config.epochs, 
                steps_per_epoch=int(np.ceil( len(train_dataset) / (batch_size * accumulation_steps) )),  # 梯度累积相当于增大了batch_size
                div_factor=train_config.div_factor,
                cycle_momentum=False,
            )
        
        model, optimizer, lr_scheduler, train_dataloader, valid_dataloader = accelerator.prepare(
                model, 
                optimizer,
                lr_scheduler, 
                train_dataloader, 
                valid_dataloader,
            )
        
        if is_keep_training:
            accelerator.load_state(input_dir=train_config.train_state_dir)
            accelerator.register_for_checkpointing(lr_scheduler)
        
        self.model = model
        self.accelerator = accelerator
        
        best_bleu4 = 0.0
        best_epoch = 0
        epoch_loss_list = []

        # 添加进度条,只在主进程更新
        if accelerator.is_main_process:
            progress = Progress(TextColumn("[progress.description]{task.description}"),
                BarColumn(),
                TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
                TimeRemainingColumn(),
                TimeElapsedColumn(),
                TextColumn("[bold blue]{task.fields[show_info]}"),
                refresh_per_second=1,  # 每1秒钟更新一次,不要频繁更新
                )
            
            epoch_progress = progress.add_task(description='epoch: ', show_info='', total=train_config.epochs)
            steps_progress = progress.add_task(description='steps: ', show_info='', \
                                                total=np.ceil(steps_per_epoch / logging_steps))
            eval_progress = progress.add_task(description='evaluate: ', show_info='', total=eval_steps, visible=False)

            self.progress = progress
            self.eval_progress = eval_progress

            progress.start()

        # end if

        for epoch in range(train_config.epochs):
            
            if accelerator.is_main_process:
                epoch_show_txt = 'epoch: {}/{}, avg_loss: {:.6f}, best_epoch: {}, best_bleu: {}'.format(
                    epoch, train_config.epochs, my_average(epoch_loss_list), best_epoch, best_bleu4
                )
                progress.update(epoch_progress, show_info=epoch_show_txt)
                progress.reset(steps_progress)

            epoch_loss_list = []
            model.train()

            # torch.cuda.empty_cache()

            for step, batch_data in enumerate(train_dataloader):

                input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
                target_ids = batch_data['target_ids']
                # for t5 model, all labels set to `-100` are ignored (masked)
                target_ids[target_ids == decoder_start_token_id] = -100

                outputs = model(
                    input_ids=input_ids,
                    attention_mask=input_mask,
                    labels=target_ids,
                )

                loss = outputs.loss.mean() / accumulation_steps

                # attention here! loss.backward()
                accelerator.backward(loss) 

                # 梯度累计
                if (step + 1) % accumulation_steps == 0:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
                
                    optimizer.step()
                    lr_scheduler.step()
                    optimizer.zero_grad()
                
                # 每隔save_steps步保存一次模型
                if (step + 1) % save_steps == 0 or step == steps_per_epoch:
                    self.save_model('epoch_{}_latest'.format(epoch))
                    accelerator.save_state(output_dir=train_config.train_state_dir)
                
                # ==================================以下记录loss到日志============================================
                # 每n步更新一次,避免频繁的cpu-gpu数据复制
                # 参考:https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#avoid-unnecessary-cpu-gpu-synchronization
                
                if step % logging_steps == 0 or step == steps_per_epoch:
                    
                    loss_cpu = loss.detach().item() * accumulation_steps
                    epoch_loss_list.append(loss_cpu)
                    
                    info_txt = 'training loss: epoch:{}, step:{}, loss:{}, device:{}'.\
                        format(epoch, step, loss_cpu, str(accelerator.device))
                    
                    log.info(info_txt, std_out=False, save_to_file=True) # 保存 loss 到文件

                    # 更新进度条
                    if accelerator.is_main_process:
                        step_show_txt = 'step: {}/{}, loss: {:.6f}'.format(step, steps_per_epoch, loss_cpu)
                        progress.advance(steps_progress, advance=1)
                        progress.update(steps_progress, show_info=step_show_txt)

                # ==================================以上记录loss到日志============================================
                
                # if step >= 20:break
            
            #  end for batch setps

            model.eval()         
            
            cur_bleu4_score = self.evaluate(
                model=model,
                tokenizer=tokenizer,
                valid_dataloader=valid_dataloader,
                accelerator=accelerator,
                eval_steps=eval_steps,
                )

            # save model
            if cur_bleu4_score >= best_bleu4:

                best_bleu4 = cur_bleu4_score
                best_epoch = epoch
                # 最多保存最近keep_latest_n_ckp个模型文件
                # self.delete_early_checkpoint(epoch=epoch, keep_latest_n=train_config.keep_latest_n_ckp)
                self.save_model('best')
                accelerator.save_state(output_dir=train_config.train_state_dir)

            # 每个epoch打印一下日志
            if accelerator.is_main_process:

                progress.advance(epoch_progress, advance=1)
                info_txt = 'epoch log: epoch:{}, avg_loss:{}, cur_bleu4:{}, best_bleu4:{}, best_epoch:{}'.\
                            format(epoch, my_average(epoch_loss_list), cur_bleu4_score, best_bleu4, best_epoch)
                # log.info(info_txt, std_out=True, save_to_file=True)
                self.print_and_log(info_txt, accelerator)


    def evaluate(self, 
                model: TextToTextModel, 
                tokenizer: PreTrainedTokenizerFast,
                valid_dataloader: DataLoader, 
                accelerator: Accelerator,
                eval_steps: int,
            ) -> float:
        
        '''
        评估,返回平均的bleu分数
        '''
        max_seq_len = self.train_config.max_seq_len
        batch_decode = tokenizer.batch_decode
        bleu4_scores = []

        if accelerator.is_main_process:
            self.progress.reset(self.eval_progress)
            self.progress.update(self.eval_progress, visible=True)

        with torch.no_grad():
            for step, batch_data in enumerate(valid_dataloader):
                
                if accelerator.is_main_process:
                    self.progress.advance(self.eval_progress, advance=1)
                    self.progress.update(self.eval_progress, show_info='step: {}/{}'.format(step, eval_steps))

                input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
                target_ids = batch_data['target_ids']

                outputs = accelerator.unwrap_model(model).my_generate(
                    input_ids=input_ids,
                    attention_mask=input_mask,
                    max_seq_len=max_seq_len,
                )

                # gather data from multi-gpus (used when in ddp mode)
                outputs = accelerator.gather_for_metrics(outputs).detach().cpu().numpy()
                target_ids = accelerator.gather_for_metrics(target_ids).detach().cpu().numpy()
        
                outputs = batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False)
                target_ids = batch_decode(target_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)

                # print(outputs, target_ids)

                bleu4_scores = [get_bleu4_score(reference=target_ids[i], outputs=outputs[i]) for i in range(len(target_ids))]
                bleu4_scores.extend(bleu4_scores)

                # if step >= 5: break
        
        avg_bleu4_score = my_average(bleu4_scores)
        if accelerator.is_main_process:
            self.progress.update(self.eval_progress, show_info='bleu4 score: {}'.format(avg_bleu4_score))
            self.progress.update(self.eval_progress, visible=False)

        return avg_bleu4_score

    def test(self, best_epoch: int=0) -> None:
        '''
        '''
        import os 

        train_config = self.train_config
        log = self.logger

        # args for dataloader
        num_workers = 0 if self.is_win_platform else 4

        test_dataset = MyDataset(
            parquet_file=train_config.train_file,
            tokenizer_dir=train_config.tokenizer_dir,
            keep_in_memory=False if self.is_win_platform else True,
            max_seq_len=train_config.max_seq_len,
        )
        
        test_dataloader = DataLoader(
            test_dataset, 
            batch_size=train_config.batch_size_per_gpu,
            shuffle=False,
            collate_fn=test_dataset.collate_fn,
            pin_memory=False,
            num_workers=num_workers,
        )

        log.info('test dataset size: {}.'.format(len(test_dataset)), save_to_file=True)

        set_seed(train_config.seed)
        accelerator = Accelerator(mixed_precision=train_config.mixed_precision)
        device = accelerator.device
        log.info('using device: {} '.format(str(device)), save_to_file=True)

         # 获取当前运行使用了多少个GPU
        num_gpus_used = accelerator.state.num_processes

        # 单机多卡,每个step总共的batch_size = batch_size_per_gpu * num_gpus_used
        # total_batch_size 初始化为batch_size_per_gpu真的只有CPU的情况
        total_batch_size = train_config.batch_size_per_gpu
        if num_gpus_used >= 1:
            total_batch_size = num_gpus_used * train_config.batch_size_per_gpu

        # T5: All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        tokenizer = test_dataset.tokenizer

        model_file = train_config.model_file.format(best_epoch)
        if os.path.isdir(model_file):
            # 传入文件夹则 from_pretrained
            model = TextToTextModel.from_pretrained(model_file)
        else:
            # load_state_dict
            t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
            model = TextToTextModel(t5_config)
            model.load_state_dict(torch.load(model_file, map_location='cpu')) # set cpu for no exception
       
        model, test_dataloader = accelerator.prepare(
                model, 
                test_dataloader,
            )
        
        steps = int(np.ceil(len(test_dataset) // total_batch_size))

        bleu4 = 0.0
        bleu4_scores = []
        batch_decode = tokenizer.batch_decode
        max_seq_len = self.train_config.max_seq_len
        model.eval()

        if accelerator.is_main_process:
            progress = Progress(TextColumn("[progress.description]{task.description}"),
                BarColumn(),
                TextColumn("[progress.percentage]{task.percentage:>3.0f}%"),
                TimeRemainingColumn(),
                TimeElapsedColumn(),
                TextColumn("[bold blue]{task.fields[show_info]}"),
                refresh_per_second=1.0,
                )
                
            steps_progress = progress.add_task(description='steps: ', show_info='', total=steps)
            progress.start()
            
        with torch.no_grad():
            for step, batch_data in enumerate(test_dataloader):

                if accelerator.is_main_process:
                    progress.advance(steps_progress, advance=1)
                    progress.update(steps_progress, show_info='step: {}/{}'.format(step, steps))

                input_ids, input_mask = batch_data['input_ids'], batch_data['input_mask']
                target_ids = batch_data['target_ids']

                # s = time.time()
                outputs = accelerator.unwrap_model(model).my_generate(
                    input_ids=input_ids,
                    attention_mask=input_mask,
                    max_seq_len=max_seq_len,
                )
                # accelerator.print('generate used: {}'.format(time.time() - s))

                # gather data from multi-gpus (used when in ddp mode)
                outputs = accelerator.gather_for_metrics(outputs).cpu().numpy()
                target_ids = accelerator.gather_for_metrics(target_ids).cpu().numpy()
                
                outputs = batch_decode(outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False)
                target_ids = batch_decode(target_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)

                # print('outputs: {}'.format(outputs[0:5]))
                # print('target_ids: {}'.format(target_ids[0:5]))
                # print()


                bleu4_scores = [get_bleu4_score(reference=target_ids[i], outputs=outputs[i]) for i in range(len(target_ids))]
                bleu4_scores.extend(bleu4_scores)

                # if step >= 10: break
        
        avg_bleu4_score = my_average(bleu4_scores)
        if accelerator.is_main_process:
            progress.update(steps_progress, show_info='bleu4 score: {}'.format(avg_bleu4_score))

        info_txt = 'test_dataset_size: {}, avg_bleu4_score:{}.'.format(len(test_dataset), avg_bleu4_score)
        log.info(info_txt, save_to_file=True)

        return avg_bleu4_score

    
    def print_and_log(self, info: str, accelerator: Accelerator=None) -> None:
        '''
        使用accelerator.print, 否则多进程打印会异常
        '''
        if not accelerator:
            print(info)
        else:
            accelerator.print(info)
        self.logger.info(info, std_out=False, save_to_file=True)

if __name__ == '__main__':
    
    # trainer = ChatTrainer()
    train_config = TrainConfig()
    model_config = T5ModelConfig()

    chat_trainer = ChatTrainer(train_config=train_config, model_config=model_config)

    chat_trainer.train()
    # chat_trainer.test(best_epoch=0)