File size: 9,535 Bytes
f4fac26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import numpy as np\n",
    "import sys\n",
    "root = '/'.join(os.path.realpath('.').replace('\\\\','/').split('/'))\n",
    "p = root + '/CMMLU/src'\n",
    "if p not in sys.path:\n",
    "    sys.path.append(p)\n",
    "import argparse\n",
    "from CMMLU.src.mp_utils import choices, format_example, gen_prompt, softmax, run_eval\n",
    "from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
    "from transformers.generation.configuration_utils import GenerationConfig"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "```bash\n",
    "git clone -- depth 1 https://github.com/haonan-li/CMMLU.git\n",
    "```\n",
    "\n",
    "cpoied from https://github.com/haonan-li/CMMLU/blob/master/src/hf_causal_model.py"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model_dir = '../model_save/dpo'  # 模型文件在上一层目录,使用dpo后的模型\n",
    "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
    "# 加载模型\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_dir)\n",
    "model = AutoModelForSeq2SeqLM.from_pretrained(model_dir).to(device)\n",
    "generation_config = GenerationConfig()\n",
    "generation_config.remove_invalid_values = True  # 自动添加InfNanRemoveLogitsProcessor\n",
    "generation_config.eos_token_id = tokenizer.eos_token_id\n",
    "generation_config.pad_token_id = tokenizer.pad_token_id\n",
    "# for t5, set decoder_start_token_id = pad_token_id\n",
    "generation_config.decoder_start_token_id = tokenizer.pad_token_id  \n",
    "generation_config.max_new_tokens = 1\n",
    "generation_config.num_beams = 1\n",
    "generation_config.do_sample = False   # greedy search\n",
    "\n",
    "choices = ['A', 'B', 'C', 'D']\n",
    "choices_ids = [tokenizer.convert_tokens_to_ids(c) for c in choices]\n",
    "choices_ids"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "def eval(model, tokenizer, subject, dev_df, test_df, num_few_shot, max_length, cot):\n",
    "    choice_ids = [tokenizer.convert_tokens_to_ids(choice) for choice in choices]\n",
    "    cors = []\n",
    "    all_conf = []\n",
    "    all_preds = []\n",
    "    answers = choices[: test_df.shape[1] - 2]\n",
    "\n",
    "    for i in range(test_df.shape[0]):\n",
    "        prompt_end = format_example(test_df, i, subject, include_answer=False)\n",
    "        prompt = gen_prompt(dev_df=dev_df,\n",
    "                            subject=subject,\n",
    "                            prompt_end=prompt_end,\n",
    "                            num_few_shot=num_few_shot,\n",
    "                            tokenizer=tokenizer,\n",
    "                            max_length=max_length)\n",
    "        inputs = tokenizer([prompt])\n",
    "        if \"token_type_ids\" in inputs: # For Falcon\n",
    "            inputs.pop(\"token_type_ids\")\n",
    "        label = test_df.iloc[i, test_df.shape[1] - 1]\n",
    "        torch.cuda.empty_cache()\n",
    "        \n",
    "        input_ids, attention_mask = torch.LongTensor(inputs['input_ids']), torch.LongTensor(inputs['attention_mask'])\n",
    "        \n",
    "        with torch.no_grad():\n",
    "            outputs = model.generate(\n",
    "            input_ids=input_ids.to(device),\n",
    "            attention_mask=attention_mask.to(device),\n",
    "            generation_config=generation_config,\n",
    "            return_dict_in_generate=True,\n",
    "            output_scores=True,\n",
    "        )\n",
    "            \n",
    "            scores = torch.stack(outputs['scores'], dim=1).to('cpu')\n",
    "            scores = torch.softmax(scores, dim=2)\n",
    "            scores = scores[...,  0, choices_ids]  #取第一个字符的ABCD概率\n",
    "            conf = scores[0][choices.index(label)]\n",
    "            choices_index = torch.argmax(scores)\n",
    "            \n",
    "            pred = choices[choices_index]\n",
    "\n",
    "        all_preds += pred\n",
    "        all_conf.append(conf)\n",
    "        cors.append(pred == label)\n",
    "\n",
    "    acc = np.mean(cors)\n",
    "    print(\"Average accuracy {:.3f} - {}\".format(acc, subject))\n",
    "    return acc, all_preds, conf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average accuracy 0.243 - agronomy\n",
      "Average accuracy 0.243 - anatomy\n",
      "Average accuracy 0.256 - ancient_chinese\n",
      "Average accuracy 0.256 - arts\n",
      "Average accuracy 0.248 - astronomy\n",
      "Average accuracy 0.234 - business_ethics\n",
      "Average accuracy 0.256 - chinese_civil_service_exam\n",
      "Average accuracy 0.260 - chinese_driving_rule\n",
      "Average accuracy 0.235 - chinese_food_culture\n",
      "Average accuracy 0.252 - chinese_foreign_policy\n",
      "Average accuracy 0.251 - chinese_history\n",
      "Average accuracy 0.250 - chinese_literature\n",
      "Average accuracy 0.246 - chinese_teacher_qualification\n",
      "Average accuracy 0.253 - clinical_knowledge\n",
      "Average accuracy 0.245 - college_actuarial_science\n",
      "Average accuracy 0.318 - college_education\n",
      "Average accuracy 0.302 - college_engineering_hydrology\n",
      "Average accuracy 0.213 - college_law\n",
      "Average accuracy 0.219 - college_mathematics\n",
      "Average accuracy 0.264 - college_medical_statistics\n",
      "Average accuracy 0.234 - college_medicine\n",
      "Average accuracy 0.240 - computer_science\n",
      "Average accuracy 0.263 - computer_security\n",
      "Average accuracy 0.252 - conceptual_physics\n",
      "Average accuracy 0.252 - construction_project_management\n",
      "Average accuracy 0.239 - economics\n",
      "Average accuracy 0.258 - education\n",
      "Average accuracy 0.250 - electrical_engineering\n",
      "Average accuracy 0.282 - elementary_chinese\n",
      "Average accuracy 0.242 - elementary_commonsense\n",
      "Average accuracy 0.282 - elementary_information_and_technology\n",
      "Average accuracy 0.283 - elementary_mathematics\n",
      "Average accuracy 0.252 - ethnology\n",
      "Average accuracy 0.252 - food_science\n",
      "Average accuracy 0.239 - genetics\n",
      "Average accuracy 0.242 - global_facts\n",
      "Average accuracy 0.272 - high_school_biology\n",
      "Average accuracy 0.235 - high_school_chemistry\n",
      "Average accuracy 0.271 - high_school_geography\n",
      "Average accuracy 0.250 - high_school_mathematics\n",
      "Average accuracy 0.255 - high_school_physics\n",
      "Average accuracy 0.252 - high_school_politics\n",
      "Average accuracy 0.254 - human_sexuality\n",
      "Average accuracy 0.249 - international_law\n",
      "Average accuracy 0.250 - journalism\n",
      "Average accuracy 0.253 - jurisprudence\n",
      "Average accuracy 0.252 - legal_and_moral_basis\n",
      "Average accuracy 0.252 - logical\n",
      "Average accuracy 0.238 - machine_learning\n",
      "Average accuracy 0.243 - management\n",
      "Average accuracy 0.250 - marketing\n",
      "Average accuracy 0.249 - marxist_theory\n",
      "Average accuracy 0.250 - modern_chinese\n",
      "Average accuracy 0.241 - nutrition\n",
      "Average accuracy 0.257 - philosophy\n",
      "Average accuracy 0.251 - professional_accounting\n",
      "Average accuracy 0.251 - professional_law\n",
      "Average accuracy 0.242 - professional_medicine\n",
      "Average accuracy 0.246 - professional_psychology\n",
      "Average accuracy 0.247 - public_relations\n",
      "Average accuracy 0.252 - security_study\n",
      "Average accuracy 0.252 - sociology\n",
      "Average accuracy 0.248 - sports_science\n",
      "Average accuracy 0.254 - traditional_chinese_medicine\n",
      "Average accuracy 0.243 - virology\n",
      "Average accuracy 0.242 - world_history\n",
      "Average accuracy 0.256 - world_religions\n",
      "STEM                                     25.16\n",
      "Humanities                               24.78\n",
      "Social Science                           25.42\n",
      "Other                                    25.15\n",
      "China specific                           25.26\n",
      "Overall                        25.17\n"
     ]
    }
   ],
   "source": [
    "from dataclasses import dataclass\n",
    "@dataclass\n",
    "class Args:\n",
    "    data_dir: str = './CMMLU/data'\n",
    "    save_dir: str = './result'\n",
    "    num_few_shot: int = 0\n",
    "    max_length: int = 512\n",
    "\n",
    "run_eval(model, tokenizer, eval, Args())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "py310",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}