Spaces:
Runtime error
Runtime error
File size: 6,848 Bytes
f4fac26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# coding=utf-8
from typing import Dict, Optional
import time
import os
import pandas as pd
import torch
from datasets import Dataset, load_dataset
from transformers import PreTrainedTokenizerFast, TrainingArguments
from trl import DPOTrainer
from tokenizers import Tokenizer
from peft import LoraConfig, TaskType, PeftModel
from config import DpoConfig, T5ModelConfig
from model.chat_model import TextToTextModel
from utils.functions import get_T5_config
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
def get_dataset(split: str, file: str, cache_dir: str = '.cache') -> Dataset:
"""Load the Anthropic Helpful-Harmless dataset from Hugging Face and convert it to the necessary format.
The dataset is converted to a dictionary with the following structure:
{
'prompt': List[str],
'chosen': List[str],
'rejected': List[str],
}
"""
dataset = load_dataset('json', data_files=file, split=split, cache_dir=cache_dir)
def split_prompt_and_responses(sample: dict) -> Dict[str, str]:
return {
# add an eos token for signal that end of sentence, using in generate.
"prompt": f"{sample['prompt']}[EOS]",
"chosen": f"{sample['chosen']}[EOS]",
"rejected": f"{sample['rejected']}[EOS]",
}
return dataset.map(split_prompt_and_responses).shuffle(2333)
def train_dpo(config: DpoConfig, peft_config: LoraConfig=None) -> None:
# step 1. 加载tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
# step 2. 加载预训练模型
model_train, model_ref = None, None
if os.path.isdir(config.sft_model_file):
# 传入文件夹则 from_pretrained
model_train = TextToTextModel.from_pretrained(config.sft_model_file)
model_ref = TextToTextModel.from_pretrained(config.sft_model_file)
else:
# load_state_dict
t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
model_train = TextToTextModel(t5_config)
model_train.load_state_dict(torch.load(config.sft_model_file, map_location='cpu')) # set cpu for no exception
model_ref = TextToTextModel(t5_config)
model_ref.load_state_dict(torch.load(config.sft_model_file, map_location='cpu'))
# 4. 加载训练数据集
train_dataset = get_dataset("train", file=config.dpo_train_file)
# 5. 加载评估数据集
# eval_dataset = get_dataset("train", file=config.dpo_eval_file)
eval_dataset = None
# 6. 初始化训练参数
training_args = TrainingArguments(
per_device_train_batch_size=config.per_device_train_batch_size,
num_train_epochs=config.num_train_epochs,
auto_find_batch_size=True,
remove_unused_columns=False,
gradient_accumulation_steps=config.gradient_accumulation_steps,
learning_rate=config.learning_rate,
logging_first_step=True,
logging_steps=config.logging_steps,
save_steps=config.save_steps,
output_dir=config.output_dir,
optim="adafactor",
report_to="tensorboard",
log_level='info',
warmup_steps=config.warmup_steps,
bf16=False,
fp16=config.fp16,
seed=config.seed,
logging_dir=config.log_dir,
)
# 7. 初始化 DPO trainer
dpo_trainer = DPOTrainer(
model_train,
model_ref,
peft_config=peft_config,
args=training_args,
beta=config.beta,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
max_length=config.max_seq_len,
max_target_length=config.max_seq_len,
max_prompt_length=config.max_seq_len,
generate_during_eval=True,
is_encoder_decoder=True,
)
# 8. 训练
dpo_trainer.train(
# resume_from_checkpoint=True
)
# 9. save log
loss_log = pd.DataFrame(dpo_trainer.state.log_history)
log_dir = './logs'
if not os.path.exists(log_dir):
os.mkdir(log_dir)
loss_log.to_csv(f"{log_dir}/dpo_train_log_{time.strftime('%Y%m%d-%H%M')}.csv")
# 10. 保存模型/lora
suffixe = '/lora/' if peft_config is not None else '/dpo'
model_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + suffixe
dpo_trainer.save_model(model_save_dir)
print('save model or lora adapter to: {}'.format(model_save_dir))
def merge_lora_weight_into_model(config: DpoConfig, peft_config: LoraConfig) -> None:
# step 1. 加载tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained(config.tokenizer_dir)
# step 2. 加载预训练模型
sft_model = None
if os.path.isdir(config.sft_model_file):
# 传入文件夹则 from_pretrained
sft_model = TextToTextModel.from_pretrained(config.sft_model_file)
else:
# load_state_dict
t5_config = get_T5_config(T5ModelConfig(), vocab_size=len(tokenizer), decoder_start_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id)
sft_model = TextToTextModel(t5_config)
sft_model.load_state_dict(torch.load(config.sft_model_file, map_location='cpu')) # set cpu for no exception
# 注意这个路径要和上面的model_save_dir一致
# train_dpo函数代码
# 9. 保存模型/lora
# suffixe = '/lora/' if peft_config is not None else '/dpo'
# model_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + suffixe
adapter_save_dir = '/'.join(config.sft_model_file.split('/')[0: -1]) + '/lora'
peft_model = PeftModel.from_pretrained(
model=sft_model,
model_id=adapter_save_dir,
config=peft_config,
adapter_name='adapter',
)
# peft_model = PeftModel(
# model=sft_model,
# peft_config=peft_config,
# adapter_name='adapter',
# )
# 3. load adapter
print('load adapter from dir: {}'.format(adapter_save_dir))
peft_model.load_adapter(model_id=adapter_save_dir, adapter_name='adapter',)
# 4. merge
peft_model = peft_model.merge_and_unload()
# 5. save
save_merge_file = config.sft_model_file + '.dpo_lora_merged'
sft_model.save_pretrained(save_merge_file)
print('save merge model file to: {}'.format(save_merge_file))
if __name__ == "__main__":
peft_config = LoraConfig(
task_type=TaskType.SEQ_2_SEQ_LM, # text 2 text lora model
inference_mode=False,
r=16,
lora_alpha=16,
lora_dropout=0.1,
bias="all",
)
dpo_config = DpoConfig()
# 1. train
train_dpo(dpo_config, peft_config=None)
# 2. merge lora adapter into model
# merge_lora_weight_into_model(dpo_config, peft_config)
|