Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,105 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
"""
|
43 |
-
|
44 |
-
"""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# 加载 xLAM 模型和 tokenizer
|
6 |
+
model_name = "Salesforce/xLAM-7b-r"
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# 定义任务提示和格式提示
|
11 |
+
task_instruction = """
|
12 |
+
Based on the previous context and API request history, generate an API request or a response as an AI assistant.
|
13 |
+
""".strip()
|
14 |
+
|
15 |
+
format_instruction = """
|
16 |
+
The output should be of the JSON format, which specifies a list of generated function calls. If no function call is needed, please make tool_calls an empty list "[]".
|
17 |
+
""".strip()
|
18 |
+
|
19 |
+
# 定义工具信息
|
20 |
+
get_weather_api = {
|
21 |
+
"name": "get_weather",
|
22 |
+
"description": "Get the current weather for a location",
|
23 |
+
"parameters": {
|
24 |
+
"type": "object",
|
25 |
+
"properties": {
|
26 |
+
"location": {
|
27 |
+
"type": "string",
|
28 |
+
"description": "The city and state, e.g. San Francisco, New York"
|
29 |
+
},
|
30 |
+
"unit": {
|
31 |
+
"type": "string",
|
32 |
+
"enum": ["celsius", "fahrenheit"],
|
33 |
+
"description": "The unit of temperature to return"
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"required": ["location"]
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
search_api = {
|
41 |
+
"name": "search",
|
42 |
+
"description": "Search for information on the internet",
|
43 |
+
"parameters": {
|
44 |
+
"type": "object",
|
45 |
+
"properties": {
|
46 |
+
"query": {
|
47 |
+
"type": "string",
|
48 |
+
"description": "The search query, e.g. 'latest news on AI'"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"required": ["query"]
|
52 |
+
}
|
53 |
+
}
|
54 |
+
|
55 |
+
# 转换工具为 xLAM 的格式
|
56 |
+
def convert_to_xlam_tool(tools):
|
57 |
+
if isinstance(tools, dict):
|
58 |
+
return {
|
59 |
+
"name": tools["name"],
|
60 |
+
"description": tools["description"],
|
61 |
+
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()}
|
62 |
+
}
|
63 |
+
elif isinstance(tools, list):
|
64 |
+
return [convert_to_xlam_tool(tool) for tool in tools]
|
65 |
+
else:
|
66 |
+
return tools
|
67 |
+
|
68 |
+
xlam_format_tools = convert_to_xlam_tool([get_weather_api, search_api])
|
69 |
+
|
70 |
+
# 生成提示
|
71 |
+
def build_prompt(task_instruction, format_instruction, tools, query):
|
72 |
+
prompt = f"[BEGIN OF TASK INSTRUCTION]\n{task_instruction}\n[END OF TASK INSTRUCTION]\n\n"
|
73 |
+
prompt += f"[BEGIN OF AVAILABLE TOOLS]\n{tools}\n[END OF AVAILABLE TOOLS]\n\n"
|
74 |
+
prompt += f"[BEGIN OF FORMAT INSTRUCTION]\n{format_instruction}\n[END OF FORMAT INSTRUCTION]\n\n"
|
75 |
+
prompt += f"[BEGIN OF QUERY]\n{query}\n[END OF QUERY]\n\n"
|
76 |
+
return prompt
|
77 |
+
|
78 |
+
# 定义模型推理函数
|
79 |
+
def generate_response(query):
|
80 |
+
# 构建输入提示
|
81 |
+
content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query)
|
82 |
+
messages = [{'role': 'user', 'content': content}]
|
83 |
+
|
84 |
+
# 编码输入
|
85 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
86 |
+
|
87 |
+
# 生成输出
|
88 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
89 |
+
|
90 |
+
# 解码输出
|
91 |
+
response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
92 |
+
return response
|
93 |
+
|
94 |
+
# 使用 Gradio 创建简单的 Web 应用
|
95 |
+
with gr.Blocks() as demo:
|
96 |
+
gr.Markdown("## 使用 xLAM 模型进行智能对话")
|
97 |
+
|
98 |
+
query = gr.Textbox(label="输入您的问题", placeholder="请输入您的问题")
|
99 |
+
output = gr.Textbox(label="模型响应")
|
100 |
+
|
101 |
+
submit_btn = gr.Button("提交")
|
102 |
+
submit_btn.click(fn=generate_response, inputs=query, outputs=output)
|
103 |
+
|
104 |
+
# 启动 Gradio 应用
|
105 |
+
demo.launch()
|