Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
5 |
+
from qreader import QReader
|
6 |
+
import cv2
|
7 |
+
import json
|
8 |
+
import ast
|
9 |
+
from datetime import datetime
|
10 |
+
|
11 |
+
|
12 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-stage1")
|
13 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-stage1")
|
14 |
+
qreader = QReader()
|
15 |
+
|
16 |
+
|
17 |
+
def yolo_and_trocr(image_input, save):
|
18 |
+
try:
|
19 |
+
# YOLO instanciated from the trained model
|
20 |
+
yolo = YOLO('/content/best.pt')
|
21 |
+
|
22 |
+
# Creating results
|
23 |
+
results = yolo(image_input, conf=0.5, iou=0.7)
|
24 |
+
res = results[0].plot()[:, :, [2,1,0]]
|
25 |
+
boxes = results[0].boxes.xyxy
|
26 |
+
image = Image.fromarray(res)
|
27 |
+
texts = []
|
28 |
+
|
29 |
+
# Texts and cropped images get saved in the lists.
|
30 |
+
for i in boxes:
|
31 |
+
img_cropped = image.crop(tuple(i.tolist()))
|
32 |
+
# TrOCR model is run to detect text in image
|
33 |
+
pixel_values = processor(img_cropped, return_tensors="pt").pixel_values
|
34 |
+
generated_ids = model.generate(pixel_values)
|
35 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
36 |
+
texts.append(generated_text)
|
37 |
+
text = texts[0]
|
38 |
+
text = f"{text[:5]}.{text[5:]}" # fix decimals
|
39 |
+
|
40 |
+
|
41 |
+
# Reading the QR code from the image
|
42 |
+
qr_code = cv2.cvtColor(cv2.imread(image_input), cv2.COLOR_BGR2RGB)
|
43 |
+
decoded_text = qreader.detect_and_decode(image=qr_code)
|
44 |
+
if len(decoded_text) == 0:
|
45 |
+
decoded_text = "No QR code detected"
|
46 |
+
else:
|
47 |
+
decoded_text = decoded_text[0]
|
48 |
+
|
49 |
+
# Saving the info in a dictionary
|
50 |
+
if save:
|
51 |
+
data_dict = ast.literal_eval(decoded_text)
|
52 |
+
with open(f"{data_dict['Address']}.json", "w") as file:
|
53 |
+
current_datetime = datetime.now()
|
54 |
+
timestamp = current_datetime.strftime("%Y-%m-%d %H:%M:%S")
|
55 |
+
data_dict['Last_Reading'] = {f'{timestamp}': f'{text}'}
|
56 |
+
json.dump(data_dict, file, indent=4)
|
57 |
+
|
58 |
+
|
59 |
+
return image, text, decoded_text
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
return "", f"Your input is invalid: {str(e)}", f"Try Again: Make sure the meter and QR code are clearly captured"
|
63 |
+
|
64 |
+
app = gr.Interface(
|
65 |
+
fn=yolo_and_trocr,
|
66 |
+
inputs=[gr.File(label="Input: Water Meter Image"), gr.Checkbox(label="Save")],
|
67 |
+
outputs=[gr.Image(label='Output: Water Meter Photo'), gr.Textbox(label="Output: Water Meter Reading"), gr.Textbox(label="Output: QR Code Detection")],
|
68 |
+
title="Water Meter Reading with YOLO and OCR"
|
69 |
+
)
|
70 |
+
|
71 |
+
app.launch()
|