languagebench / evals /backend.py
davidpomerenke's picture
Upload from GitHub Actions: Merge pull request #22 from datenlabor-bmz/dev
2cdada4 verified
raw
history blame
6.54 kB
import json
import os
import numpy as np
import pandas as pd
import uvicorn
from countries import make_country_table
from datasets_.util import load
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
scores = load("results")
languages = load("languages")
models = load("models")
def mean(lst):
return sum(lst) / len(lst) if lst else None
task_metrics = [
"translation_from_bleu",
"translation_to_bleu",
"classification_accuracy",
"mmlu_accuracy",
"arc_accuracy",
"truthfulqa_accuracy",
"mgsm_accuracy",
]
def compute_normalized_average(df, metrics):
"""Compute average of min-max normalized metric columns."""
normalized_df = df[metrics].copy()
for col in metrics:
if col in normalized_df.columns:
col_min = normalized_df[col].min()
col_max = normalized_df[col].max()
if col_max > col_min: # Avoid division by zero
normalized_df[col] = (normalized_df[col] - col_min) / (
col_max - col_min
)
else:
normalized_df[col] = 0 # If all values are the same, set to 0
return normalized_df.mean(axis=1, skipna=False)
def make_model_table(scores_df, models):
scores_df = scores_df.copy()
# Create a combined task_metric for origin
scores_df["task_metric_origin"] = (
scores_df["task"] + "_" + scores_df["metric"] + "_" + scores_df["origin"]
)
# Pivot to get scores for each origin-specific metric
scores_pivot = scores_df.pivot_table(
index="model",
columns="task_metric_origin",
values="score",
aggfunc="mean",
)
# Create the regular task_metric for the main average calculation
scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
main_pivot = scores_df.pivot_table(
index="model", columns="task_metric", values="score", aggfunc="mean"
)
# Merge the two pivots
df = pd.merge(main_pivot, scores_pivot, on="model", how="outer")
for metric in task_metrics:
if metric not in df.columns:
df[metric] = np.nan
df["average"] = compute_normalized_average(df, task_metrics)
# Add flag if any machine-origin data was used
machine_presence = scores_df[scores_df["origin"] == "machine"].groupby(["model", "task_metric"]).size()
for metric in task_metrics:
df[f"{metric}_contains_machine"] = df.index.map(lambda m: (m, metric) in machine_presence.index)
df = df.sort_values(by="average", ascending=False).reset_index()
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
df["rank"] = df.index + 1
# Dynamically find all metric columns to include
final_cols = df.columns
metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]
df["creation_date"] = df["creation_date"].apply(lambda x: x.isoformat() if x else None)
df = df[
[
"rank",
"model",
"name",
"provider_name",
"hf_id",
"creation_date",
"size",
"type",
"license",
"cost",
"average",
*sorted(list(set(metric_cols))),
]
]
return df
def make_language_table(scores_df, languages):
scores_df = scores_df.copy()
scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
# Pivot scores
score_pivot = scores_df.pivot_table(
index="bcp_47", columns="task_metric", values="score", aggfunc="mean"
)
# Pivot origins (first origin since each task+lang combo has only one)
origin_pivot = scores_df.pivot_table(
index="bcp_47", columns="task_metric", values="origin", aggfunc="first"
)
origin_pivot = origin_pivot.add_suffix("_origin")
df = pd.merge(score_pivot, origin_pivot, on="bcp_47", how="outer")
for metric in task_metrics:
if metric not in df.columns:
df[metric] = np.nan
df["average"] = compute_normalized_average(df, task_metrics)
df = pd.merge(languages, df, on="bcp_47", how="outer")
df = df.sort_values(by="speakers", ascending=False)
# Dynamically find all metric columns to include
final_cols = df.columns
metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]
df = df[
[
"bcp_47",
"language_name",
"autonym",
"speakers",
"family",
"average",
"in_benchmark",
*sorted(list(set(metric_cols))),
]
]
return df
app = FastAPI()
app.add_middleware(CORSMiddleware, allow_origins=["*"])
app.add_middleware(GZipMiddleware, minimum_size=1000)
def serialize(df):
return df.replace({np.nan: None}).to_dict(orient="records")
@app.post("/api/data")
async def data(request: Request):
body = await request.body()
data = json.loads(body)
selected_languages = data.get("selectedLanguages", {})
# Identify which metrics have machine translations available
machine_translated_metrics = {
f"{row['task']}_{row['metric']}"
for _, row in scores.iterrows()
if row["origin"] == "machine"
}
# Filter by selected languages if provided
df = scores[scores["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)] if selected_languages else scores
if len(df) == 0:
model_table = pd.DataFrame()
countries = pd.DataFrame()
else:
model_table = make_model_table(df, models)
countries = make_country_table(make_language_table(df, languages))
language_table = make_language_table(scores, languages)
datasets_df = pd.read_json("data/datasets.json")
return JSONResponse(content={
"model_table": serialize(model_table),
"language_table": serialize(language_table),
"dataset_table": serialize(datasets_df),
"countries": serialize(countries),
"machine_translated_metrics": list(machine_translated_metrics),
})
# Only serve static files if build directory exists
if os.path.exists("frontend/build"):
app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))