Spaces:
Running
Running
| import json | |
| import re | |
| from collections import defaultdict | |
| from datetime import date | |
| from os import getenv | |
| import pandas as pd | |
| from aiolimiter import AsyncLimiter | |
| from dotenv import load_dotenv | |
| from elevenlabs import AsyncElevenLabs | |
| from huggingface_hub import AsyncInferenceClient, HfApi | |
| from joblib.memory import Memory | |
| from openai import AsyncOpenAI | |
| from requests import HTTPError, get | |
| # for development purposes, all languages will be evaluated on the fast models | |
| # and only a sample of languages will be evaluated on all models | |
| models = [ | |
| "meta-llama/llama-4-maverick", # 0.6$ | |
| "meta-llama/llama-3.3-70b-instruct", # 0.3$ | |
| "meta-llama/llama-3.1-70b-instruct", # 0.3$ | |
| "meta-llama/llama-3-70b-instruct", # 0.4$ | |
| # "meta-llama/llama-2-70b-chat", # 0.9$; not properly supported by OpenRouter | |
| "openai/gpt-4.1-mini", # 1.6$ | |
| "openai/gpt-4.1-nano", # 0.4$ | |
| "openai/gpt-4o-mini", # 0.6$ | |
| "openai/gpt-3.5-turbo-0613", # 2$ | |
| "openai/gpt-3.5-turbo", # 1.5$ | |
| # "anthropic/claude-3.5-haiku", # 4$ -> too expensive for dev | |
| "mistralai/mistral-small-3.1-24b-instruct", # 0.3$ | |
| "mistralai/mistral-saba", # 0.6$ | |
| "mistralai/mistral-nemo", # 0.08$ | |
| "google/gemini-2.5-flash-preview", # 0.6$ | |
| "google/gemini-2.0-flash-lite-001", # 0.3$ | |
| "google/gemma-3-27b-it", # 0.2$ | |
| # "qwen/qwen-turbo", # 0.2$; recognizes "inappropriate content" | |
| # "qwen/qwq-32b", # 0.2$ | |
| # "qwen/qwen-2.5-72b-instruct", # 0.39$ | |
| # "qwen/qwen-2-72b-instruct", # 0.9$ | |
| "deepseek/deepseek-chat-v3-0324", # 1.1$ | |
| "deepseek/deepseek-chat", # 0.89$ | |
| "microsoft/phi-4", # 0.07$ | |
| "microsoft/phi-4-multimodal-instruct", # 0.1$ | |
| "amazon/nova-micro-v1", # 0.09$ | |
| ] | |
| blocklist = [ | |
| "google/gemini-2.5-pro-exp-03-25" # rate limit too low | |
| ] | |
| transcription_models = [ | |
| "elevenlabs/scribe_v1", | |
| "openai/whisper-large-v3", | |
| # "openai/whisper-small", | |
| # "facebook/seamless-m4t-v2-large", | |
| ] | |
| cache = Memory(location=".cache", verbose=0).cache | |
| def get_models(date: date): | |
| return get("https://openrouter.ai/api/frontend/models").json()["data"] | |
| def get_model(permaslug): | |
| models = get_models(date.today()) | |
| slugs = [m for m in models if m["permaslug"] == permaslug] | |
| return slugs[0] if len(slugs) == 1 else None | |
| def get_historical_popular_models(date: date): | |
| raw = get("https://openrouter.ai/rankings").text | |
| data = re.search(r'{\\"data\\":(.*),\\"isPercentage\\"', raw).group(1) | |
| data = json.loads(data.replace("\\", "")) | |
| counts = defaultdict(int) | |
| for day in data: | |
| for model, count in day["ys"].items(): | |
| if model.startswith("openrouter") or model == "Others": | |
| continue | |
| counts[model.split(":")[0]] += count | |
| counts = sorted(counts.items(), key=lambda x: x[1], reverse=True) | |
| return [get_model(model) for model, _ in counts] | |
| def get_current_popular_models(date: date): | |
| raw = get("https://openrouter.ai/rankings").text | |
| data = re.search(r'{\\"rankMap\\":(.*)\}\]\\n"\]\)</script>', raw).group(1) | |
| data = json.loads(data.replace("\\", ""))["day"] | |
| data = sorted(data, key=lambda x: x["total_prompt_tokens"], reverse=True) | |
| return [get_model(model["model_permaslug"]) for model in data] | |
| popular_models = ( | |
| get_historical_popular_models(date.today())[:5] | |
| + get_current_popular_models(date.today())[:5] | |
| ) | |
| popular_models = [get_model(m) for m in popular_models if get_model(m)] | |
| popular_models = [ | |
| m for m in popular_models if m["endpoint"] and not m["endpoint"]["is_free"] | |
| ] | |
| popular_models = [m["slug"] for m in popular_models] | |
| popular_models = [ | |
| m for m in popular_models if m and m not in models and m not in blocklist | |
| ] | |
| models += popular_models | |
| load_dotenv() | |
| client = AsyncOpenAI( | |
| base_url="https://openrouter.ai/api/v1", | |
| api_key=getenv("OPENROUTER_API_KEY"), | |
| ) | |
| openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1) | |
| elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1) | |
| huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1) | |
| async def complete(**kwargs): | |
| async with openrouter_rate_limit: | |
| response = await client.chat.completions.create(**kwargs) | |
| if not response.choices: | |
| raise Exception(response) | |
| return response | |
| async def transcribe_elevenlabs(path, model): | |
| modelname = model.split("/")[-1] | |
| client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY")) | |
| async with elevenlabs_rate_limit: | |
| with open(path, "rb") as file: | |
| response = await client.speech_to_text.convert( | |
| model_id=modelname, file=file | |
| ) | |
| return response.text | |
| async def transcribe_huggingface(path, model): | |
| client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN")) | |
| async with huggingface_rate_limit: | |
| output = await client.automatic_speech_recognition(model=model, audio=path) | |
| return output.text | |
| async def transcribe(path, model="elevenlabs/scribe_v1"): | |
| provider, modelname = model.split("/") | |
| match provider: | |
| case "elevenlabs": | |
| return await transcribe_elevenlabs(path, modelname) | |
| case "openai" | "facebook": | |
| return await transcribe_huggingface(path, model) | |
| case _: | |
| raise ValueError(f"Model {model} not supported") | |
| models = pd.DataFrame(models, columns=["id"]) | |
| def get_or_metadata(id): | |
| # get metadata from OpenRouter | |
| models = get_models(date.today()) | |
| metadata = next((m for m in models if m["slug"] == id), None) | |
| return metadata | |
| api = HfApi() | |
| def get_hf_metadata(row): | |
| # get metadata from the HuggingFace API | |
| empty = { | |
| "hf_id": None, | |
| "creation_date": None, | |
| "size": None, | |
| "type": "Commercial", | |
| "license": None, | |
| } | |
| if not row: | |
| return empty | |
| id = row["hf_slug"] or row["slug"].split(":")[0] | |
| if not id: | |
| return empty | |
| try: | |
| info = api.model_info(id) | |
| license = ( | |
| (info.card_data.license or "") | |
| .replace("-", " ") | |
| .replace("mit", "MIT") | |
| .title() | |
| ) | |
| return { | |
| "hf_id": info.id, | |
| "creation_date": info.created_at, | |
| "size": info.safetensors.total if info.safetensors else None, | |
| "type": "Open", | |
| "license": license, | |
| } | |
| except HTTPError: | |
| return empty | |
| def get_cost(row): | |
| cost = float(row["endpoint"]["pricing"]["completion"]) | |
| return round(cost * 1_000_000, 2) | |
| or_metadata = models["id"].apply(get_or_metadata) | |
| hf_metadata = or_metadata.apply(get_hf_metadata) | |
| creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date | |
| creation_date_or = pd.to_datetime( | |
| or_metadata.str["created_at"].str.split("T").str[0] | |
| ).dt.date | |
| models = models.assign( | |
| name=or_metadata.str["short_name"], | |
| provider_name=or_metadata.str["name"].str.split(": ").str[0], | |
| cost=or_metadata.apply(get_cost), | |
| hf_id=hf_metadata.str["hf_id"], | |
| size=hf_metadata.str["size"], | |
| type=hf_metadata.str["type"], | |
| license=hf_metadata.str["license"], | |
| creation_date=creation_date_hf.combine_first(creation_date_or), | |
| ) | |
| models = models[models["cost"] <= 2.0].reset_index(drop=True) | |