Spaces:
Runtime error
Runtime error
import asyncio | |
import json | |
import os | |
import random | |
import re | |
import tarfile | |
from datetime import date | |
from os import getenv | |
from pathlib import Path | |
import evaluate | |
import pandas as pd | |
import requests | |
from aiolimiter import AsyncLimiter | |
from dotenv import load_dotenv | |
from elevenlabs import AsyncElevenLabs | |
from huggingface_hub import AsyncInferenceClient | |
from joblib.memory import Memory | |
from langcodes import Language, standardize_tag | |
from language_data.population_data import LANGUAGE_SPEAKING_POPULATION | |
from openai import AsyncOpenAI | |
from pyglottolog import Glottolog | |
from requests import get | |
from rich import print | |
from tqdm.asyncio import tqdm_asyncio | |
from transformers import NllbTokenizer | |
# ===== config ===== | |
# for development purposes, all languages will be evaluated on the fast models | |
# and only a sample of languages will be evaluated on all models | |
models = [ | |
"openai/gpt-4o-mini", # 0.6$/M tokens | |
# "anthropic/claude-3.5-haiku", # 4$/M tokens -> too expensive for dev | |
"meta-llama/llama-3.3-70b-instruct", # 0.3$/M tokens | |
"mistralai/mistral-small-24b-instruct-2501", # 0.14$/M tokens | |
"google/gemini-2.0-flash-001", # 0.4$/M tokens | |
# "qwen/qwen-turbo", # 0.2$/M tokens; recognizes "inappropriate content" | |
# "deepseek/deepseek-chat", # 0.9$/M tokens | |
"microsoft/phi-4", # 0.07$/M tokens | |
] | |
model_fast = "meta-llama/llama-3.3-70b-instruct" | |
transcription_models = [ | |
"elevenlabs/scribe_v1", | |
"openai/whisper-large-v3-turbo", | |
# "openai/whisper-small", | |
# "facebook/seamless-m4t-v2-large", | |
] | |
transcription_model_fast = "openai/whisper-large-v3-turbo" | |
n_sentences = 30 | |
# ===== setup ===== | |
load_dotenv() | |
client = AsyncOpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key=getenv("OPENROUTER_API_KEY"), | |
) | |
cache = Memory(location=".cache", verbose=0).cache | |
bleu = evaluate.load("bleu") | |
chrf = evaluate.load("chrf") | |
wer = evaluate.load("wer") | |
tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") | |
openrouter_rate_limit = AsyncLimiter(max_rate=20, time_period=1) | |
elevenlabs_rate_limit = AsyncLimiter(max_rate=2, time_period=1) | |
huggingface_rate_limit = AsyncLimiter(max_rate=5, time_period=1) | |
# ===== load metadata ===== | |
# load general language data | |
languages = { | |
lang: pop | |
for lang, pop in LANGUAGE_SPEAKING_POPULATION.items() | |
if not re.match(r".*-[A-Z]{2}$", lang) | |
} | |
languages = pd.DataFrame(list(languages.items()), columns=["bcp_47", "speakers"]) | |
languages["language_name"] = languages["bcp_47"].apply( | |
lambda x: Language.get(x).display_name() | |
) | |
# load script codes and names | |
scripts = pd.read_csv("data/ScriptCodes.csv").rename( | |
columns={"Code": "iso15924", "English Name": "script_name"} | |
) | |
def population(bcp_47): | |
items = { | |
re.sub(r"^[a-z]+-", "", lang): pop | |
for lang, pop in LANGUAGE_SPEAKING_POPULATION.items() | |
if re.match(rf"^{bcp_47}-[A-Z]{{2}}$", lang) | |
} | |
return items | |
glottolog = Glottolog("data/glottolog-5.1") | |
def language_family(iso_639_3): | |
languoid = glottolog.languoid(iso_639_3) | |
return languoid.family.name if languoid else None | |
def script_name(iso15924): | |
return scripts[scripts["iso15924"] == iso15924]["script_name"].values[0] | |
def aggregate_flores_paths(flores_paths): | |
# takes a list of paths from the same language but different scripts | |
# returns the one with the largest writing population | |
if len(flores_paths) == 1: | |
return flores_paths.values[0] | |
populations = [ | |
Language.get(standardize_tag(x, macro=True)).writing_population() | |
for x in flores_paths.values | |
] | |
return flores_paths.values[populations.index(max(populations))] | |
# load benchmark languages and scripts | |
benchmark_dir = "data/floresp-v2.0-rc.3/dev" | |
benchmark_languages = pd.DataFrame( | |
[f.split(".")[1] for f in os.listdir(benchmark_dir)], | |
columns=["flores_path"], | |
) | |
benchmark_languages["bcp_47"] = benchmark_languages["flores_path"].apply( | |
lambda x: standardize_tag(x, macro=True), | |
) | |
# ignore script (language is language) | |
benchmark_languages["bcp_47"] = benchmark_languages["bcp_47"].apply( | |
lambda x: re.sub(r"-[A-Z][a-z]+$", "", x) | |
) | |
benchmark_languages = ( | |
benchmark_languages.groupby("bcp_47") | |
.agg({"flores_path": aggregate_flores_paths}) | |
.reset_index() | |
) | |
fleurs_tags = "af_za,am_et,ar_eg,as_in,ast_es,az_az,be_by,bg_bg,bn_in,bs_ba,ca_es,ceb_ph,ckb_iq,cmn_hans_cn,cs_cz,cy_gb,da_dk,de_de,el_gr,en_us,es_419,et_ee,fa_ir,ff_sn,fi_fi,fil_ph,fr_fr,ga_ie,gl_es,gu_in,ha_ng,he_il,hi_in,hr_hr,hu_hu,hy_am,id_id,ig_ng,is_is,it_it,ja_jp,jv_id,ka_ge,kam_ke,kea_cv,kk_kz,km_kh,kn_in,ko_kr,ky_kg,lb_lu,lg_ug,ln_cd,lo_la,lt_lt,luo_ke,lv_lv,mi_nz,mk_mk,ml_in,mn_mn,mr_in,ms_my,mt_mt,my_mm,nb_no,ne_np,nl_nl,nso_za,ny_mw,oc_fr,om_et,or_in,pa_in,pl_pl,ps_af,pt_br,ro_ro,ru_ru,sd_in,sk_sk,sl_si,sn_zw,so_so,sr_rs,sv_se,sw_ke,ta_in,te_in,tg_tj,th_th,tr_tr,uk_ua,umb_ao,ur_pk,uz_uz,vi_vn,wo_sn,xh_za,yo_ng,yue_hant_hk,zu_za" | |
fleurs = pd.DataFrame(fleurs_tags.split(","), columns=["fleurs_tag"]) | |
fleurs["bcp_47"] = fleurs["fleurs_tag"].apply( | |
lambda x: standardize_tag(x.rsplit("_")[0], macro=True) | |
) | |
def download_file(url, path): | |
response = requests.get(url) | |
with open(path, "wb") as f: | |
f.write(response.content) | |
def download_fleurs(): | |
# the huggingface loader does not allow loading only the dev set, so do it manually | |
for language in languages[languages["in_benchmark"]].itertuples(): | |
tar_url = f"https://huggingface.co/datasets/google/fleurs/resolve/main/data/{language.fleurs_tag}/audio/dev.tar.gz" | |
tar_path = Path(f"data/fleurs/{language.fleurs_tag}/audio/dev.tar.gz") | |
if not tar_path.exists(): | |
print(f"Downloading {tar_url} to {tar_path}") | |
tar_path.parent.mkdir(parents=True, exist_ok=True) | |
download_file(tar_url, tar_path) | |
with tarfile.open(tar_path, "r:gz") as tar: | |
tar.extractall(path=f"data/fleurs/{language.fleurs_tag}/audio") | |
tsv_url = f"https://huggingface.co/datasets/google/fleurs/resolve/main/data/{language.fleurs_tag}/dev.tsv" | |
tsv_path = Path(f"data/fleurs/{language.fleurs_tag}/dev.tsv") | |
if not tsv_path.exists(): | |
print(f"Downloading {tsv_url} to {tsv_path}") | |
tsv_path.parent.mkdir(parents=True, exist_ok=True) | |
download_file(tsv_url, tsv_path) | |
# load CommonVoice stats | |
# cache for 1 day | |
def get_commonvoice_stats(date: date): | |
return get("https://commonvoice.mozilla.org/api/v1/stats/languages").json() | |
commonvoice_stats = pd.DataFrame(get_commonvoice_stats(date.today())).rename( | |
columns={"locale": "commonvoice_locale", "validatedHours": "commonvoice_hours"} | |
)[["commonvoice_locale", "commonvoice_hours"]] | |
# ignore country (language is language) (in practive this is only relevant to zh-CN/zh-TW/zh-HK) | |
commonvoice_stats["bcp_47"] = commonvoice_stats["commonvoice_locale"].apply( | |
lambda x: re.sub(r"-[A-Z]{2}$", "", x) | |
) | |
commonvoice_stats["bcp_47"] = commonvoice_stats["bcp_47"].apply( | |
lambda x: standardize_tag(x, macro=True) | |
) # this does not really seem to get macrolanguages though, e.g. not for Quechua | |
commonvoice_stats = ( | |
commonvoice_stats.groupby("bcp_47") | |
.agg({"commonvoice_hours": "sum", "commonvoice_locale": "first"}) | |
.reset_index() | |
) | |
# merge data | |
languages = pd.merge( | |
languages, benchmark_languages, on="bcp_47", how="left" | |
) # "left" because keep it simple for now | |
languages = pd.merge( | |
languages, fleurs, on="bcp_47", how="left" | |
) # "left" because keep it simple for now | |
languages = pd.merge( | |
languages, commonvoice_stats, on="bcp_47", how="left" | |
) # "left" because keep it simple for now | |
languages["in_benchmark"] = languages["bcp_47"].isin(benchmark_languages["bcp_47"]) | |
languages = languages.sort_values(by="speakers", ascending=False).iloc[:5] | |
# sample languages to translate to | |
target_languages = languages[languages["in_benchmark"]].sample( | |
n=n_sentences, weights="speakers", replace=True, random_state=42 | |
) | |
# sample languages to analyze with all models | |
detailed_languages = languages[languages["in_benchmark"]].iloc[:2] | |
# ===== define tasks and metrics ===== | |
async def complete(**kwargs): | |
async with openrouter_rate_limit: | |
response = await client.chat.completions.create(**kwargs) | |
if not response.choices: | |
raise Exception(response) | |
return response | |
def load_sentences(language): | |
return open(f"{benchmark_dir}/dev.{language.flores_path}").readlines() | |
async def translate_and_evaluate(model, original_language_bcp_47, sentence_nr): | |
original_language = languages[languages["bcp_47"] == original_language_bcp_47].iloc[ | |
0 | |
] | |
target_language = target_languages.iloc[sentence_nr] | |
original_sentence = load_sentences(original_language)[sentence_nr].strip() | |
target_sentence = load_sentences(target_language)[sentence_nr].strip() | |
script = script_name(target_language.flores_path.split("_")[1]) | |
reply = await complete( | |
model=model, | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"Translate the following text to the {target_language.language_name} language; use the {script} script; reply only with the translation:\n\n{original_sentence}", | |
} | |
], | |
temperature=0, | |
max_tokens=1024, | |
) | |
prediction = reply.choices[0].message.content.strip() | |
bleu_score = bleu.compute( | |
predictions=[prediction], | |
references=[target_sentence], | |
tokenizer=tokenizer.tokenize, | |
) | |
chrf_score = chrf.compute(predictions=[prediction], references=[target_sentence]) | |
return { | |
"model": model, | |
"bcp_47": original_language["bcp_47"], | |
"mt_bleu": bleu_score["bleu"], | |
"mt_chrf": chrf_score["score"], | |
"sentence_nr": sentence_nr, | |
} | |
metadata = pd.read_csv("data/floresp-v2.0-rc.3/metadata_dev.tsv", sep="\t") | |
async def classify_and_evaluate(model, language_bcp_47, nr): | |
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0] | |
sentences = pd.DataFrame(load_sentences(language), columns=["text"]) | |
sentences = pd.concat([metadata, sentences], axis=1) | |
sentences = sentences.dropna(subset=["topic"]) | |
sentences["topic"] = sentences["topic"].str.lower() | |
paragraphs = ( | |
sentences.groupby("URL").agg({"text": " ".join, "topic": "first"}).reset_index() | |
) | |
top_topics = paragraphs.value_counts("topic").head(5).index | |
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)] | |
examples = pd.concat( | |
[ | |
paragraphs[paragraphs["topic"] == t].sample(n=5, random_state=42) | |
for t in top_topics | |
] | |
).sample(frac=1, random_state=42) | |
test_paragraphs = paragraphs[~paragraphs["URL"].isin(examples["URL"])].sample( | |
frac=1, random_state=42 | |
) | |
test_paragraph = test_paragraphs.iloc[nr] | |
def topic_to_number(topic): | |
return top_topics.get_loc(topic) | |
messages = [] | |
for example in examples.itertuples(): | |
messages += [ | |
{"role": "user", "content": example.text}, | |
{"role": "assistant", "content": str(topic_to_number(example.topic))}, | |
] | |
reply = await complete( | |
model=model, | |
messages=[ | |
*messages, | |
{ | |
"role": "user", | |
"content": test_paragraph.text, | |
}, | |
], | |
temperature=0, | |
max_tokens=5, | |
) | |
try: | |
prediction = int(reply.choices[0].message.content.strip()) | |
except ValueError: | |
prediction = -1 | |
return { | |
"model": model, | |
"bcp_47": language["bcp_47"], | |
"true": topic_to_number(test_paragraph.topic), | |
"pred": prediction, | |
"sentence_nr": nr, | |
} | |
def corrupt_sentence(sentence): | |
# replace 5% of the sentence with <mask> | |
mask_length = round(len(sentence) * 0.05) | |
start = random.randint(0, len(sentence) - mask_length) | |
end = start + mask_length | |
return sentence[:start] + "<mask>" + sentence[end:] | |
async def mlm_and_evaluate(model, language_bcp_47, nr): | |
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0] | |
sentences = pd.DataFrame(load_sentences(language), columns=["text"]) | |
sentences["corrupt_text"] = sentences["text"].apply(corrupt_sentence) | |
examples = sentences.sample(n=10, random_state=42) | |
test_sentences = sentences[~sentences["text"].isin(examples["text"])].sample( | |
frac=1, random_state=42 | |
) | |
test_sentence = test_sentences.iloc[nr] | |
messages = [] | |
for example in examples.itertuples(): | |
messages += [ | |
{"role": "user", "content": example.corrupt_text}, | |
{"role": "assistant", "content": example.text}, | |
] | |
reply = await complete( | |
model=model, | |
messages=[ | |
*messages, | |
{ | |
"role": "user", | |
"content": test_sentence.corrupt_text, | |
}, | |
], | |
temperature=0, | |
max_tokens=1024, | |
) | |
prediction = reply.choices[0].message.content.strip() | |
chrf_score = chrf.compute(predictions=[prediction], references=[test_sentence.text]) | |
return { | |
"model": model, | |
"bcp_47": language["bcp_47"], | |
"mlm_chrf": chrf_score["score"], | |
"sentence_nr": nr, | |
} | |
async def transcribe_elevenlabs(path, model): | |
modelname = model.split("/")[-1] | |
client = AsyncElevenLabs(api_key=getenv("ELEVENLABS_API_KEY")) | |
async with elevenlabs_rate_limit: | |
with open(path, "rb") as file: | |
response = await client.speech_to_text.convert( | |
model_id=modelname, file=file | |
) | |
return response.text | |
async def transcribe_huggingface(path, model): | |
client = AsyncInferenceClient(api_key=getenv("HUGGINGFACE_ACCESS_TOKEN")) | |
async with huggingface_rate_limit: | |
output = await client.automatic_speech_recognition(model=model, audio=path) | |
return output.text | |
async def transcribe(path, model="elevenlabs/scribe_v1"): | |
provider, modelname = model.split("/") | |
match provider: | |
case "elevenlabs": | |
return await transcribe_elevenlabs(path, modelname) | |
case "openai" | "facebook": | |
return await transcribe_huggingface(path, model) | |
case _: | |
raise ValueError(f"Model {model} not supported") | |
async def transcribe_and_evaluate(model, language_bcp_47, nr): | |
language = languages[languages["bcp_47"] == language_bcp_47].iloc[0] | |
fleurs = pd.read_csv( | |
f"data/fleurs/{language.fleurs_tag}/dev.tsv", | |
sep="\t", | |
names=[ | |
"id", | |
"fname", | |
"raw_transcription", | |
"transcription", | |
"words", | |
"id2", | |
"gender", | |
], | |
) | |
item = fleurs.iloc[nr] | |
path = f"data/fleurs/{language.fleurs_tag}/audio/dev/{item.fname}" | |
pred = await transcribe(path, model=model) | |
score = wer.compute(predictions=[pred], references=[item.transcription]) | |
return { | |
"model": model, | |
"bcp_47": language["bcp_47"], | |
"asr_wer": score, | |
"sentence_nr": nr, | |
} | |
# ===== run evaluation and aggregate results ===== | |
def mean(lst): | |
return sum(lst) / len(lst) if lst else None | |
async def main(): | |
print("evaluate translation") | |
translation_scores = [ | |
translate_and_evaluate(model, original_language.bcp_47, i) | |
for i in range(n_sentences) | |
for original_language in languages.itertuples() | |
for model in models | |
if original_language.in_benchmark | |
and ( | |
model == model_fast | |
or original_language.bcp_47 in detailed_languages.bcp_47.values | |
) | |
] | |
translation_scores = await tqdm_asyncio.gather(*translation_scores, miniters=1) | |
print("evaluate classification") | |
classification_scores = [ | |
classify_and_evaluate(model, language.bcp_47, i) | |
for i in range(n_sentences) | |
for language in languages.itertuples() | |
for model in models | |
if language.in_benchmark | |
and (model == model_fast or language.bcp_47 in detailed_languages.bcp_47.values) | |
] | |
classification_scores = await tqdm_asyncio.gather( | |
*classification_scores, miniters=1 | |
) | |
print("evaluate masked language modeling") | |
mlm_scores = [ | |
mlm_and_evaluate(model, language.bcp_47, i) | |
for i in range(n_sentences) | |
for language in languages.itertuples() | |
for model in models | |
if language.in_benchmark | |
and (model == model_fast or language.bcp_47 in detailed_languages.bcp_47.values) | |
] | |
mlm_scores = await tqdm_asyncio.gather(*mlm_scores, miniters=1) | |
print("evaluate transcription") | |
transcription_scores = [ | |
transcribe_and_evaluate(model, language.bcp_47, i) | |
for i in range(n_sentences) | |
for language in languages.itertuples() | |
for model in transcription_models | |
if language.in_benchmark | |
and ( | |
model == transcription_model_fast | |
or language.bcp_47 in detailed_languages.bcp_47.values | |
) | |
] | |
transcription_scores = await tqdm_asyncio.gather(*transcription_scores, miniters=1) | |
all_results = [] | |
for language in languages.itertuples(): | |
results = [] | |
for model in models: | |
scores_mt = [ | |
score | |
for score in translation_scores | |
if score["bcp_47"] == language.bcp_47 and score["model"] == model | |
] | |
scores_cls = [ | |
score | |
for score in classification_scores | |
if score["bcp_47"] == language.bcp_47 and score["model"] == model | |
] | |
scores_mlm = [ | |
score | |
for score in mlm_scores | |
if score["bcp_47"] == language.bcp_47 and score["model"] == model | |
] | |
if not scores_mt: | |
continue | |
mt_bleu = mean([s["mt_bleu"] for s in scores_mt]) | |
mt_chrf = mean([s["mt_chrf"] for s in scores_mt]) | |
cls_acc = mean([s["true"] == s["pred"] for s in scores_cls]) | |
mlm_chrf = mean([s["mlm_chrf"] for s in scores_mlm]) | |
overall_score = (mt_chrf / 100 + cls_acc + mlm_chrf / 100) / 3 | |
results.append( | |
{ | |
"model": model, | |
"model_type": "text-to-text", | |
"mt_bleu": mt_bleu, | |
"mt_chrf": mt_chrf, | |
"cls_acc": cls_acc, | |
"mlm_chrf": mlm_chrf, | |
"overall_score": overall_score, | |
} | |
) | |
for model in transcription_models: | |
scores_asr = [ | |
score | |
for score in transcription_scores | |
if score["bcp_47"] == language.bcp_47 and score["model"] == model | |
] | |
if not scores_asr: | |
continue | |
asr_wer = mean([s["asr_wer"] for s in scores_asr]) | |
results.append( | |
{ | |
"model": model, | |
"model_type": "speech-to-text", | |
"asr_wer": asr_wer, | |
"overall_score": asr_wer, | |
} | |
) | |
if results: | |
language_results = { | |
"language_name": language.language_name, | |
"bcp_47": language.bcp_47, | |
"speakers": language.speakers, | |
"scores": results, | |
"commonvoice_hours": language.commonvoice_hours | |
if not pd.isna(language.commonvoice_hours) | |
else None, | |
"commonvoice_locale": language.commonvoice_locale | |
if not pd.isna(language.commonvoice_locale) | |
else None, | |
"population": population(language.bcp_47), | |
"language_family": language_family(language.flores_path.split("_")[0]), | |
} | |
for score in [ | |
"mt_bleu", | |
"mt_chrf", | |
"cls_acc", | |
"mlm_chrf", | |
"asr_wer", | |
"overall_score", | |
]: | |
language_results[score] = mean( | |
[s[score] for s in results if score in s] | |
) | |
all_results.append(language_results) | |
with open("results.json", "w") as f: | |
json.dump(all_results, f, indent=2, ensure_ascii=False) | |
if __name__ == "__main__": | |
download_fleurs() | |
asyncio.run(main()) | |