Spaces:
Runtime error
Runtime error
# download_data.py | |
import requests | |
import tarfile | |
import zipfile | |
import io | |
import pandas as pd | |
from pathlib import Path | |
import sys | |
import huggingface_hub | |
from datasets import load_dataset, DatasetDict | |
# Import fleurs DataFrame directly from its source module | |
from datasets_.fleurs import fleurs | |
# --- Configuration --- | |
# Add project root to sys.path (still useful for potential future imports if needed) | |
project_root = Path(__file__).resolve().parent.parent | |
if str(project_root) not in sys.path: | |
sys.path.append(str(project_root)) | |
DATA_DIR = project_root / "data" | |
FLEURS_BASE_URL = "https://huggingface.co/datasets/google/fleurs/resolve/main/data" | |
FLEURS_TARGET_DIR = DATA_DIR / "fleurs" | |
FLORES_PLUS_HF_ID = "openlanguagedata/flores_plus" | |
FLORES_TARGET_DIR = DATA_DIR / "floresp-v2.0-rc.3" / "dev_parquet" # Note: Saving as parquet | |
GLOTTOLOG_URL = "https://cdstar.shh.mpg.de/bitstreams/EAEA0-B44E-8CEC-EA65-0/glottolog_languoid.zip" # Assumed direct link from https://glottolog.org/meta/downloads | |
GLOTTOLOG_TARGET_DIR = DATA_DIR / "glottolog_languoid.csv" | |
GLOTTOLOG_CSV_NAME = "languoid.csv" | |
SCRIPTCODES_URL = "https://www.unicode.org/iso15924/iso15924-codes.html" # This is HTML, need manual download or parsing | |
SCRIPTCODES_TARGET_FILE = DATA_DIR / "ScriptCodes.csv" | |
SPBLEU_SPM_URL = "https://tinyurl.com/flores200sacrebleuspm" # Assumed direct link | |
SPBLEU_TARGET_DIR = DATA_DIR / "spbleu" | |
SPBLEU_SPM_NAME = "flores200_sacrebleu_tokenizer_spm.model" | |
SPBLEU_DICT_URL = "https://dl.fbaipublicfiles.com/large_objects/nllb/models/spm_200/dictionary.txt" | |
SPBLEU_DICT_NAME = "dictionary.txt" | |
# --- Helper Functions --- | |
def download_file(url, path: Path): | |
"""Downloads a file from a URL to a local path.""" | |
print(f"Downloading {url} to {path}...") | |
try: | |
response = requests.get(url, stream=True, timeout=60) | |
response.raise_for_status() # Raise an exception for bad status codes | |
path.parent.mkdir(parents=True, exist_ok=True) | |
with open(path, "wb") as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
print(f"Successfully downloaded {path.name}.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error downloading {url}: {e}") | |
except Exception as e: | |
print(f"An error occurred while saving {path}: {e}") | |
def extract_tar_gz(tar_path: Path, extract_path: Path): | |
"""Extracts a .tar.gz file.""" | |
print(f"Extracting {tar_path} to {extract_path}...") | |
try: | |
with tarfile.open(tar_path, "r:gz") as tar: | |
tar.extractall(path=extract_path) | |
print(f"Successfully extracted {tar_path.name}.") | |
# tar_path.unlink() # Optionally remove the archive after extraction | |
except tarfile.TarError as e: | |
print(f"Error extracting {tar_path}: {e}") | |
except Exception as e: | |
print(f"An unexpected error occurred during extraction: {e}") | |
def extract_zip(zip_content: bytes, extract_path: Path, target_filename: str): | |
"""Extracts a specific file from zip content in memory.""" | |
print(f"Extracting {target_filename} from zip data to {extract_path}...") | |
try: | |
with zipfile.ZipFile(io.BytesIO(zip_content)) as z: | |
# Find the correct file within the zip structure | |
target_zip_path = None | |
for member in z.namelist(): | |
if member.endswith(target_filename): | |
target_zip_path = member | |
break | |
if target_zip_path: | |
with z.open(target_zip_path) as source, open(extract_path / target_filename, "wb") as target: | |
target.write(source.read()) | |
print(f"Successfully extracted {target_filename}.") | |
else: | |
print(f"Error: Could not find {target_filename} within the zip archive.") | |
except zipfile.BadZipFile: | |
print("Error: Downloaded file is not a valid zip archive.") | |
except Exception as e: | |
print(f"An error occurred during zip extraction: {e}") | |
# --- Download Functions --- | |
def download_fleurs_data(): | |
"""Downloads Fleurs audio and text data.""" | |
print("\n--- Downloading Fleurs Data ---") | |
FLEURS_TARGET_DIR.mkdir(parents=True, exist_ok=True) | |
# Use the fleurs_tag column from the imported DataFrame | |
fleurs_tags_list = fleurs['fleurs_tag'].tolist() | |
if not fleurs_tags_list: | |
print("No Fleurs tags found in imported fleurs DataFrame. Skipping Fleurs.") | |
return | |
print(f"Checking/Downloading Fleurs for {len(fleurs_tags_list)} languages...") | |
for lang_tag in fleurs_tags_list: | |
lang_dir = FLEURS_TARGET_DIR / lang_tag | |
audio_dir = lang_dir / "audio" | |
dev_tsv_path = lang_dir / "dev.tsv" | |
dev_audio_archive_path = audio_dir / "dev.tar.gz" | |
audio_extracted_marker = audio_dir / "dev" # Check if extraction likely happened | |
# Download TSV | |
if not dev_tsv_path.exists(): | |
tsv_url = f"{FLEURS_BASE_URL}/{lang_tag}/dev.tsv" | |
download_file(tsv_url, dev_tsv_path) | |
else: | |
print(f"Found: {dev_tsv_path}") | |
# Download and Extract Audio | |
if not audio_extracted_marker.exists(): | |
if not dev_audio_archive_path.exists(): | |
tar_url = f"{FLEURS_BASE_URL}/{lang_tag}/audio/dev.tar.gz" | |
download_file(tar_url, dev_audio_archive_path) | |
if dev_audio_archive_path.exists(): | |
extract_tar_gz(dev_audio_archive_path, audio_dir) | |
else: | |
print(f"Audio archive missing, cannot extract for {lang_tag}") | |
else: | |
print(f"Found extracted audio: {audio_extracted_marker}") | |
def download_flores_plus_data(): | |
"""Downloads Flores+ data using Hugging Face datasets library.""" | |
print("\n--- Downloading Flores+ Data (requires HF login & accepted terms) ---") | |
FLORES_TARGET_DIR.mkdir(parents=True, exist_ok=True) | |
try: | |
# Check login status first | |
token = huggingface_hub.HfFolder.get_token() | |
if not token: | |
print("Hugging Face token not found. Please log in using `huggingface-cli login`.") | |
print("You also need to accept the terms for 'openlanguagedata/flores_plus' on the HF website.") | |
return | |
print(f"Attempting to download '{FLORES_PLUS_HF_ID}' (dev split)...") | |
# Load only the 'dev' split | |
ds = load_dataset(FLORES_PLUS_HF_ID, split='dev', verification_mode='no_checks') | |
# Save as parquet files, potentially one per language if needed later | |
# For simplicity now, save the whole dev split as one parquet file | |
target_file = FLORES_TARGET_DIR / "dev_split.parquet" | |
print(f"Saving dev split to {target_file}...") | |
ds.to_parquet(target_file) | |
print("Flores+ dev split downloaded and saved as parquet.") | |
except huggingface_hub.utils.GatedRepoError: | |
print(f"Error: Access to '{FLORES_PLUS_HF_ID}' is gated.") | |
print("Please ensure you are logged in (`huggingface-cli login`) and have accepted the terms ") | |
print(f"on the dataset page: https://huggingface.co/datasets/{FLORES_PLUS_HF_ID}") | |
except Exception as e: | |
print(f"An error occurred downloading or saving Flores+: {e}") | |
def download_glottolog_data(): | |
"""Downloads and extracts Glottolog languoid CSV.""" | |
print("\n--- Downloading Glottolog Data ---") | |
target_csv = GLOTTOLOG_TARGET_DIR / GLOTTOLOG_CSV_NAME | |
if not target_csv.exists(): | |
print(f"Downloading Glottolog zip from {GLOTTOLOG_URL}...") | |
try: | |
response = requests.get(GLOTTOLOG_URL, timeout=60) | |
response.raise_for_status() | |
GLOTTOLOG_TARGET_DIR.mkdir(parents=True, exist_ok=True) | |
extract_zip(response.content, GLOTTOLOG_TARGET_DIR, GLOTTOLOG_CSV_NAME) | |
except requests.exceptions.RequestException as e: | |
print(f"Error downloading Glottolog zip: {e}") | |
except Exception as e: | |
print(f"An error occurred processing Glottolog: {e}") | |
else: | |
print(f"Found: {target_csv}") | |
def download_scriptcodes_data(): | |
"""Downloads ScriptCodes CSV.""" | |
print("\n--- Downloading ScriptCodes Data ---") | |
# The URL points to an HTML page, not a direct CSV link. | |
# Manual download is likely required for ScriptCodes.csv. | |
print(f"Cannot automatically download from {SCRIPTCODES_URL}") | |
print(f"Please manually download the ISO 15924 codes list (often available as a .txt file)") | |
print("from the Unicode website or related sources and save it as:") | |
print(f"{SCRIPTCODES_TARGET_FILE}") | |
if SCRIPTCODES_TARGET_FILE.exists(): | |
print(f"Note: File already exists at {SCRIPTCODES_TARGET_FILE}") | |
def download_spbleu_data(): | |
"""Downloads the SPM model and dictionary for spbleu.""" | |
print("\n--- Downloading spbleu SPM Model and Dictionary ---") | |
SPBLEU_TARGET_DIR.mkdir(parents=True, exist_ok=True) | |
# Download SPM Model | |
target_model_file = SPBLEU_TARGET_DIR / SPBLEU_SPM_NAME | |
if not target_model_file.exists(): | |
print(f"Downloading SPM Model...") | |
download_file(SPBLEU_SPM_URL, target_model_file) | |
else: | |
print(f"Found: {target_model_file}") | |
# Download Dictionary | |
target_dict_file = SPBLEU_TARGET_DIR / SPBLEU_DICT_NAME | |
if not target_dict_file.exists(): | |
print(f"Downloading Dictionary...") | |
download_file(SPBLEU_DICT_URL, target_dict_file) | |
else: | |
print(f"Found: {target_dict_file}") | |
# --- Conversion Function --- | |
def convert_flores_parquet_to_text(): | |
"""Converts the downloaded Flores+ parquet dev split to text files.""" | |
print("\n--- Converting Flores+ Parquet to Text Files ---") | |
parquet_file = FLORES_TARGET_DIR / "dev_split.parquet" | |
text_dir = project_root / "data" / "floresp-v2.0-rc.3" / "dev" # Original expected dir | |
if not parquet_file.exists(): | |
print(f"Parquet file not found: {parquet_file}. Skipping conversion.") | |
return | |
try: | |
print(f"Reading parquet file: {parquet_file}") | |
df = pd.read_parquet(parquet_file) | |
print(f"Read {len(df)} rows from parquet.") | |
if not all(col in df.columns for col in ['iso_639_3', 'iso_15924', 'text']): | |
print("Error: Parquet file missing required columns (iso_639_3, iso_15924, text).") | |
return | |
text_dir.mkdir(parents=True, exist_ok=True) | |
print(f"Target directory for text files: {text_dir}") | |
# Group by language and script to create individual files | |
grouped = df.groupby(['iso_639_3', 'iso_15924']) | |
count = 0 | |
for (lang, script), group in grouped: | |
target_filename = f"dev.{lang}_{script}" | |
target_path = text_dir / target_filename | |
print(f"Writing {len(group)} sentences to {target_path}...") | |
try: | |
with open(target_path, 'w', encoding='utf-8') as f: | |
for sentence in group['text']: | |
f.write(sentence + '\n') | |
count += 1 | |
except Exception as e: | |
print(f"Error writing file {target_path}: {e}") | |
print(f"Successfully wrote {count} language/script files to {text_dir}.") | |
except ImportError: | |
print("Error: pandas or pyarrow might be missing. Cannot read parquet.") | |
print("Please install them: pip install pandas pyarrow") | |
except Exception as e: | |
print(f"An error occurred during parquet conversion: {e}") | |
# --- Main Execution --- | |
def main(): | |
"""Runs all download functions and the conversion step.""" | |
print("Starting data download process...") | |
DATA_DIR.mkdir(exist_ok=True) | |
download_flores_plus_data() | |
convert_flores_parquet_to_text() | |
#download_fleurs_data() | |
download_glottolog_data() | |
download_scriptcodes_data() | |
download_spbleu_data() | |
print("\nData download process finished.") | |
print("Please verify downloads and manually obtain ScriptCodes.csv if needed.") | |
print("Note: Flores+ was downloaded as parquet, which might require changes but has been processed as well") | |
print("in 'evals/datasets_/flores.py' to be read correctly.") | |
if __name__ == "__main__": | |
main() |