Spaces:
Running
Running
metadata
title: AI Language Monitor
emoji: π
colorFrom: purple
colorTo: pink
sdk: docker
app_port: 8000
license: cc-by-sa-4.0
short_description: Evaluating LLM performance across all human languages.
datasets:
- openlanguagedata/flores_plus
- google/fleurs
- mozilla-foundation/common_voice_1_0
- CohereForAI/Global-MMLU
models:
- meta-llama/Llama-3.3-70B-Instruct
- mistralai/Mistral-Small-24B-Instruct-2501
- deepseek-ai/DeepSeek-V3
- microsoft/phi-4
- openai/whisper-large-v3
- google/gemma-3-27b-it
tags:
- leaderboard
- submission:manual
- test:public
- judge:auto
- modality:text
- modality:artefacts
- eval:generation
- language:English
- language:German
AI Language Monitor π
Tracking language proficiency of AI models for every language
System Architecture
The AI Language Monitor evaluates language models across 100+ languages using a comprehensive pipeline that combines model discovery, automated evaluation, and real-time visualization.
Detailed Architecture: See system_architecture_diagram.md for the complete system architecture diagram and component descriptions.
Key Features:
- Model Discovery: Combines curated models with real-time trending models via web scraping
- Multi-Task Evaluation: 7 tasks across 100+ languages with origin tracking (human vs machine-translated)
- Scalable Architecture: Dual deployment (local/GitHub vs Google Cloud)
- Real-time Visualization: Interactive web interface with country-level insights
Evaluate
Local Development
uv run --extra dev evals/main.py
Explore
uv run evals/backend.py
cd frontend && npm i && npm start