from flask import Flask, request, jsonify, render_template app = Flask(__name__) # Route for the home page @app.route('/') def index(): return render_template('index.html') # Prediction endpoint (mock prediction for now) @app.route('/predict', methods=['POST']) def predict(): data = request.json activities = data.get('activities') # Placeholder logic for prediction (replace with your ML model) if activities: predicted_score = sum(activities) / len(activities) # Example logic return jsonify({'predicted_score': predicted_score}) return jsonify({'error': 'No activities provided'}), 400 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)