Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,8 @@ torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
|
7 |
model = AutoModelForSeq2SeqLM.from_pretrained("prithivida/parrot_paraphraser_on_T5")
|
8 |
def get_response(input_text,num_return_sequences):
|
9 |
-
batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=
|
10 |
-
translated = model.generate(**batch,max_length=60,num_beams=
|
11 |
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
|
12 |
return tgt_text
|
13 |
|
@@ -20,7 +20,7 @@ def paraphraze(text):
|
|
20 |
paraphrase = []
|
21 |
|
22 |
for i in sentence_list:
|
23 |
-
a = get_response(i,
|
24 |
paraphrase.append(a)
|
25 |
paraphrase2 = [' '.join(x) for x in paraphrase]
|
26 |
paraphrase3 = [' '.join(x for x in paraphrase2) ]
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5")
|
7 |
model = AutoModelForSeq2SeqLM.from_pretrained("prithivida/parrot_paraphraser_on_T5")
|
8 |
def get_response(input_text,num_return_sequences):
|
9 |
+
batch = tokenizer.prepare_seq2seq_batch([input_text],truncation=False,padding='longest',max_length=100, return_tensors="pt").to(torch_device)
|
10 |
+
translated = model.generate(**batch,max_length=60,num_beams=10, num_return_sequences=num_return_sequences, temperature=1.5)
|
11 |
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
|
12 |
return tgt_text
|
13 |
|
|
|
20 |
paraphrase = []
|
21 |
|
22 |
for i in sentence_list:
|
23 |
+
a = get_response(i,1)
|
24 |
paraphrase.append(a)
|
25 |
paraphrase2 = [' '.join(x) for x in paraphrase]
|
26 |
paraphrase3 = [' '.join(x for x in paraphrase2) ]
|