from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation import gradio as gr from PIL import Image # Load the model and feature extractor model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes") feature_extractor = SegformerFeatureExtractor.from_pretrained("mattmdjaga/segformer_b2_clothes") def predict(image): inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # Decode outputs and return results as needed return "Segmentation output placeholder" # Replace with actual processing def segmentation_interface(image): return predict(image) # Create a Gradio interface for image segmentation gr.Interface(fn=segmentation_interface, inputs="image", outputs="text").launch()