fadzwan commited on
Commit
eca57c0
·
verified ·
1 Parent(s): 2e8ae12

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -4
README.md CHANGED
@@ -1,4 +1,40 @@
1
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  title: EcoSoundNet
3
  emoji: 🔥
4
  colorFrom: pink
@@ -7,6 +43,3 @@ sdk: streamlit
7
  sdk_version: 1.41.1
8
  app_file: app.py
9
  pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ # EcoSoundNet 🔥
2
+
3
+ Welcome to EcoSoundNet, a sound classification application built using Streamlit. This project leverages audio data from the **UrbanSound8K** dataset and implements machine learning models for sound classification. Check out the details below!
4
+
5
+ ## Overview
6
+
7
+ EcoSoundNet uses state-of-the-art techniques for audio classification, aiming to detect various environmental sounds. The model is trained on the **UrbanSound8K** dataset, which contains 8,732 labeled sound excerpts from urban environments. The project includes preprocessing steps, model training, and validation with accuracy comparisons.
8
+
9
+ ## Dataset
10
+
11
+ The dataset used for training the model is the [UrbanSound8K](https://www.kaggle.com/datasets/chrisfilo/urbansound8k) dataset. This dataset consists of sound clips from 10 different urban sound classes, making it suitable for environmental sound classification tasks.
12
+
13
+ ## Notebooks for Preprocessing, Training, and Accuracy Comparisons
14
+
15
+ For detailed insights into the preprocessing, training, and validation steps, please refer to the following notebook:
16
+
17
+ [Training and Validation Notebook](https://colab.research.google.com/drive/1bOEBYO6emJOO20LYviUWK6krXbvoziIo?usp=sharing)
18
+
19
+ This notebook covers:
20
+ - Data preprocessing steps
21
+ - Model training
22
+ - Accuracy comparisons of different models
23
+
24
+ ## Streamlit App
25
+
26
+ The main application is built using **Streamlit**, a powerful framework for creating data science applications. You can run the app using the file `app.py`.
27
+
28
+ ### Configuration
29
+
30
+ - **SDK**: Streamlit
31
+ - **SDK Version**: 1.41.1
32
+ - **App File**: `app.py`
33
+ - **Pinned**: No
34
+
35
+ ### App Configuration
36
+
37
+ ```yaml
38
  title: EcoSoundNet
39
  emoji: 🔥
40
  colorFrom: pink
 
43
  sdk_version: 1.41.1
44
  app_file: app.py
45
  pinned: false