JianyuanWang commited on
Commit
0740a7a
·
1 Parent(s): e8227e4

upadte app

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -15,7 +15,7 @@ from datetime import datetime
15
  import glob
16
  import gc
17
  import time
18
- # import spaces
19
 
20
 
21
  sys.path.append("vggt/")
@@ -43,7 +43,7 @@ model.eval()
43
  # -------------------------------------------------------------------------
44
  # 1) Core model inference
45
  # -------------------------------------------------------------------------
46
- # @spaces.GPU(duration=120)
47
  def run_model(target_dir, model) -> dict:
48
  """
49
  Run the VGGT model on images in the 'target_dir/images' folder and return predictions.
@@ -183,7 +183,7 @@ def update_gallery_on_upload(input_video, input_images):
183
  # -------------------------------------------------------------------------
184
  # 4) Reconstruction: uses the target_dir plus any viz parameters
185
  # -------------------------------------------------------------------------
186
- # @spaces.GPU(duration=120)
187
  def gradio_demo(
188
  target_dir,
189
  conf_thres=3.0,
@@ -413,7 +413,7 @@ with gr.Blocks(
413
  </details>
414
  </li>
415
  </ol>
416
- <p><strong style="color: #0ea5e9;">Please note:</strong> <span style="color: #0ea5e9; font-weight: bold;">Our method usually only needs less than 1 second to reconstruct a scene, but the visualization of 3D points may take tens of seconds</span>, especially when the number of images is large. Please be patient or, for faster visualization, use a local machine to run our demo from our <a href="https://github.com/facebookresearch/vggt">GitHub repository</a>.</p>
417
  </div>
418
  """
419
  )
 
15
  import glob
16
  import gc
17
  import time
18
+ import spaces
19
 
20
 
21
  sys.path.append("vggt/")
 
43
  # -------------------------------------------------------------------------
44
  # 1) Core model inference
45
  # -------------------------------------------------------------------------
46
+ @spaces.GPU(duration=120)
47
  def run_model(target_dir, model) -> dict:
48
  """
49
  Run the VGGT model on images in the 'target_dir/images' folder and return predictions.
 
183
  # -------------------------------------------------------------------------
184
  # 4) Reconstruction: uses the target_dir plus any viz parameters
185
  # -------------------------------------------------------------------------
186
+ @spaces.GPU(duration=120)
187
  def gradio_demo(
188
  target_dir,
189
  conf_thres=3.0,
 
413
  </details>
414
  </li>
415
  </ol>
416
+ <p><strong style="color: #0ea5e9;">Please note:</strong> <span style="color: #0ea5e9; font-weight: bold;">Our model itself usually only needs less than 1 second to reconstruct a scene. However, visualizing 3D points may take tens of seconds due to third-party rendering, which are independent of VGGT's processing time. Please be patient or, for faster visualization, use a local machine to run our demo from our <a href="https://github.com/facebookresearch/vggt">GitHub repository</a>. </span></p>
417
  </div>
418
  """
419
  )